RDG for DPF Zero Trust (DPF-ZT)

Created Sep 08, 2025

Scope

This Reference Deployment Guide (RDG) provides comprehensive instructions for deploying the NVIDIA DOCA Platform Framework (DPF) on high-performance, bare-metal infrastructure in Zero-Trust mode. It focuses on the setup and use of DPU-based services on NVIDIA® BlueField®-3 DPUs to deliver secure, isolated, and hardware-accelerated environments.

The guide is intended for experienced system administrators, systems engineers, and solution architects who build highly secure bare-metal environments using NVIDIA BlueField DPUs for acceleration, isolation, and infrastructure offload.

Note
  • This reference implementation, as the name implies, is a specific, opinionated deployment example designed to address the use case described above.

  • Although other approaches may exist for implementing similar solutions, this document provides a detailed guide for this specific method.

Abbreviations and Acronyms

Term

Definition

Term

Definition

BFB

BlueField Bootstream

NGC

NVIDIA GPU Cloud

DOCA

Data Center Infrastructure-on-a-Chip Architecture

NFS

Network File System

DPF

DOCA Platform Framework

OOB

Out-of-Band

DPU

Data Processing Unit

PF

Physical Function

K8S

Kubernetes

RDG

Reference Deployment Guide

KVM

Kernel-based Virtual Machine

RDMA

Remote Direct Memory Access

MAAS

Metal as a Service

RoCE

RDMA over Converged Ethernet

MTU

Maximum Transmission Unit

ZT

Zero Trust

Introduction

The NVIDIA BlueField-3 Data Processing Unit (DPU) is a 400 Gb/s infrastructure compute platform designed for line-rate processing of software-defined networking, storage, and cybersecurity workloads. It combines powerful compute resources, high-speed networking, and advanced programmability to deliver hardware-accelerated, software-defined solutions for modern data centers.

NVIDIA DOCA unleashes the full potential of the BlueField platform by enabling rapid development of applications and services that offload, accelerate, and isolate data center workloads.

However, deploying and managing DPUs, especially at scale, presents operational challenges. Without a robust provisioning and orchestration system, tasks such as lifecycle management, service deployment, and network configuration for service function chaining (SFC) can quickly become complex and error prone. This is where the DOCA Platform Framework (DPF) comes into play.

DPF automates the full DPU lifecycle, and simplifies advanced network configurations. With DPF, services can be deployed seamlessly, allowing for efficient offloading and intelligent routing of traffic through the DPU data plane.

By leveraging DPF, users can scale and automate DPU management across Bare Metal, Virtual, and Kubernetes customer environments - optimizing performance while simplifying operations.

DPF supports multiple deployment models. This guide focuses on the Zero Trust bare-metal deployment model. In this scenario:

  • The DPU is managed through its Baseboard Management Controller (BMC)
  • All management traffic occurs over the DPU's out-of-band (OOB) network
  • The host is considered as an untrusted entity towards the data center network. The DPU acts as a barrier between the host and the network.
  • The host sees the DPU as a standard NIC, with no access to the internal DPU management plane (Zero Trust Mode)

This Reference Deployment Guide (RDG) provides a step-by-step example for installing DPF in Zero-Trust mode. It also includes practical demonstrations of performance optimization, validated using standard RDMA and TCP workloads.

As part of the reference implementation, open-source components outside the scope of DPF (e.g., MAAS, pfSense, Kubespray) are used to simulate a realistic customer deployment environment. The guide includes the full end-to-end deployment process, including:

  • Infrastructure provisioning
  • DPF deployment
  • DPU provisioning (redfish)
  • Service configuration and deployment
  • Service chaining.

References

    Solution Architecture

    Key Components and Technologies

    • NVIDIA BlueField® Data Processing Unit (DPU)

      The NVIDIA® BlueField® data processing unit (DPU) ignites unprecedented innovation for modern data centers and supercomputing clusters. With its robust compute power and integrated software-defined hardware accelerators for networking, storage, and security, BlueField creates a secure and accelerated infrastructure for any workload in any environment, ushering in a new era of accelerated computing and AI.

    • NVIDIA DOCA Software Framework

      NVIDIA DOCA™ unlocks the potential of the NVIDIA® BlueField® networking platform. By harnessing the power of BlueField DPUs and SuperNICs, DOCA enables the rapid creation of applications and services that offload, accelerate, and isolate data center workloads. It lets developers create software-defined, cloud-native, DPU- and SuperNIC-accelerated services with zero-trust protection, addressing the performance and security demands of modern data centers.

    • NVIDIA ConnectX SmartNICs

      10/25/40/50/100/200 and 400G Ethernet Network Adapters

      The industry-leading NVIDIA® ConnectX® family of smart network interface cards (SmartNICs) offer advanced hardware offloads and accelerations.

      NVIDIA Ethernet adapters enable the highest ROI and lowest Total Cost of Ownership for hyperscale, public and private clouds, storage, machine learning, AI, big data, and telco platforms.

    • NVIDIA LinkX Cables

      The NVIDIA® LinkX® product family of cables and transceivers provides the industry’s most complete line of 10, 25, 40, 50, 100, 200, and 400GbE in Ethernet and 100, 200 and 400Gb/s InfiniBand products for Cloud, HPC, hyperscale, Enterprise, telco, storage and artificial intelligence, data center applications.

    • NVIDIA Spectrum Ethernet Switches

      Flexible form-factors with 16 to 128 physical ports, supporting 1GbE through 400GbE speeds.

      Based on a ground-breaking silicon technology optimized for performance and scalability, NVIDIA Spectrum switches are ideal for building high-performance, cost-effective, and efficient Cloud Data Center Networks, Ethernet Storage Fabric, and Deep Learning Interconnects.

      NVIDIA combines the benefits of NVIDIA Spectrum switches, based on an industry-leading application-specific integrated circuit (ASIC) technology, with a wide variety of modern network operating system choices, including NVIDIA Cumulus® Linux , SONiC and NVIDIA Onyx®.

    • NVIDIA Cumulus Linux

      NVIDIA® Cumulus® Linux is the industry's most innovative open network operating system that allows you to automate, customize, and scale your data center network like no other.

    • Kubernetes

      Kubernetes is an open-source container orchestration platform for deployment automation, scaling, and management of containerized applications.

    • Kubespray

      Kubespray is a composition of Ansible playbooks, inventory, provisioning tools, and domain knowledge for generic OS/Kubernetes clusters configuration management tasks and provides:

      • A highly available cluster
      • Composable attributes
      • Support for most popular Linux distributions

    Solution Design

    Solution Logical Design

    The logical design includes the following components:

    • 1 x Hypervisor node (KVM-based) with ConnectX-7:

      • 1 x Firewall VM
      • 1 x Jump Node VM
      • 1 x MaaS VM
      • 3 x K8s Master VMs running all K8s management components
    • 4 x Worker nodes (PCI Gen5), each with a 1 x BlueField-3 NIC
    • Single High-Speed (HS) switch
    • 1 Gb Host Management network

    image-2025-7-27_10-37-13-version-1-modificationdate-1753601833767-api-v2.png

    Firewall Design

    The pfSense firewall in this solution serves a dual purpose:

    • Firewall—provides an isolated environment for the DPF system, ensuring secure operations
    • Router—enables Internet access for the management network

    Port-forwarding rules for SSH and RDP are configured on the firewall to route traffic to the jump node’s IP address in the host management network. From the jump node, administrators can manage and access various devices in the setup, as well as handle the deployment of the Kubernetes (K8s) cluster and DPF components.
    The following diagram illustrates the firewall design used in this solution:

    image-2025-5-7_10-44-2-1-version-1-modificationdate-1748173964367-api-v2.png

    Software Stack Components

    image-2025-9-9_9-17-48-1-version-1-modificationdate-1757398669247-api-v2.png

    Warning

    Make sure to use the exact same versions for the software stack as described above.

    Bill of Materials

    image-2025-7-27_10-55-0-1-version-1-modificationdate-1753602900987-api-v2.png

    Deployment and Configuration

    Node and Switch Definitions

    These are the definitions and parameters used for deploying the demonstrated fabric:

    Switches Ports Usage

    Hostname

    Rack ID

    Ports

    mgmt-switch

    1

    swp1-5

    hs-switch

    1

    swp1-9

    Hosts

    Rack

    Server Type

    Server Name

    Switch Port

    IP and NICs

    Default Gateway

    Rack1

    Hypervisor Node

    hypervisor

    mgmt-switch: swp1

    hs-switch: swp1

    lab-br (interface eno1): Trusted LAN IP

    mgmt-br (interface eno2): -

    hs-br (interface enp1s0): -

    Trusted LAN GW

    Rack1

    Firewall (Virtual)

    fw

    -

    WAN (lab-br): Trusted LAN IP

    LAN (mgmt-br): 10.0.110.254/24

    OPT1(hs-br): 10.0.123.254/22

    Trusted LAN GW

    Rack1

    Jump Node (Virtual)

    jump

    -

    enp1s0: 10.0.110.253/24

    10.0.110.254

    Rack1

    MaaS (Virtual)

    maas

    -

    enp1s0: 10.0.110.252/24

    10.0.110.254

    Rack1

    Master Node

    (Virtual)

    master1

    -

    enp1s0: 10.0.110.1/24

    10.0.110.254

    Rack1

    Master Node

    (Virtual)

    master2

    -

    enp1s0: 10.0.110.2/24

    10.0.110.254

    Rack1

    Master Node

    (Virtual)

    master3

    -

    enp1s0: 10.0.110.3/24

    10.0.110.254

    Rack1

    Worker Node

    worker1

    mgmt-switch: swp2(DPU BMC/OOB)

    hs-switch: swp2-swp3

    dpubmc: 10.0.110.201/24

    dpuoob: 10.0.110.211/24

    ens1f0np0/ens1f1np1: 10.0.120.0/22

    10.0.110.254

    Rack1

    Worker Node

    worker2

    mgmt-switch: swp3(DPU BMC/OOB)

    hs-switch: swp4-swp5

    dpubmc: 10.0.110.202/24

    dpuoob: 10.0.110.212/24

    ens1f0np0/ens1f1np1: 10.0.120.0/22

    10.0.110.254

    Rack1

    Worker Node

    worker3

    mgmt-switch: swp4(DPU BMC/OOB)

    hs-switch: swp6-swp7

    dpubmc: 10.0.110.203/24

    dpuoob: 10.0.110.213/24

    ens1f0np0/ens1f1np1: 10.0.120.0/22

    10.0.110.254

    Rack1

    Worker Node

    worker4

    mgmt-switch: swp5(DPU BMC/OOB)

    hs-switch: swp8-swp9

    dpubmc: 10.0.110.204/24

    dpuoob: 10.0.110.214/24

    ens1f0np0/ens1f1np1: 10.0.120.0/22

    10.0.110.254

    Wiring

    Hypervisor Node

    image-2025-7-27_10-52-53-1-version-1-modificationdate-1753602774207-api-v2.png

    Bare Metal Worker Node

    image-2025-6-3_8-46-2-1-version-1-modificationdate-1748929565303-api-v2.png

    Fabric Configuration

    Updating Cumulus Linux

    As a best practice, make sure to use the latest released Cumulus Linux NOS version.

    For information on how to upgrade Cumulus Linux, refer to the Cumulus Linux User Guide.

    Configuring the Cumulus Linux Switch

    The SN3700 switch (hs-switch), is configured as follows:

    SN3700 Switch Console

    Copy
    Copied!
                

    nv set bridge domain br_hs untagged 1 nv set interface swp1-5 bridge domain br_hs nv set interface swp1-5 link state up nv set interface swp1-5 type swp nv config apply -y nv config save -y

    The SN2201 switch (mgmt-switch) is configured as follows:

    SN2201 Switch Console

    Copy
    Copied!
                

    nv set interface swp1-3 link state up nv set interface swp1-3 type swp nv set interface swp1-3 bridge domain br_default nv set bridge domain br_default untagged 1 nv config apply nv config save -y

    Host Configuration

    Warning

    Make sure that the BIOS settings on the worker node servers have SR-IOV enabled and that the servers are tuned for maximum performance.

    All worker nodes must have the same PCIe placement for the BlueField-3 NIC and must display the same interface name.

    Make sure that you have DPU BMC and OOB MAC addresses.

    Hypervisor Installation and Configuration

    The hypervisor used in this Reference Deployment Guide (RDG) is based on Ubuntu 24.04 with KVM.

    While this document does not detail the KVM installation process, it is important to note that the setup requires the following ISOs to deploy the Firewall, Jump, and MaaS virtual machines (VMs):

    • Ubuntu 24.04
    • pfSense-CE-2.7.2

    To implement the solution, three Linux bridges must be created on the hypervisor:

    Note

    Ensure a DHCP record is configured for the lab-br bridge interface in your trusted LAN to assign it an IP address.

    • lab-br – connects the Firewall VM to the trusted LAN.
    • mgmt-br – Connects the various VMs to the host management network.
    • hs-br – Connects the Firewall VM to the high-speed network.

    Additionally, an MTU of 9000 must be configured on the management and high-speed bridges ( mgmt-br and hs-br ) as well as their uplink interfaces to ensure optimal performance.

    Hypervisor netplan configuration

    Copy
    Copied!
                

    network: ethernets: eno1: dhcp4: false eno2: dhcp4: false mtu: 9000 ens2f0np0: dhcp4: false mtu: 9000 bridges: lab-br: interfaces: [eno1] dhcp4: true mgmt-br: interfaces: [eno2] dhcp4: false mtu: 9000 hs-br: interfaces: [ens2f0np0] dhcp4: false mtu: 9000 version: 2

    Apply the configuration:

    Hypervisor Console

    Copy
    Copied!
                

    $ sudo netplan apply

    Prepare Infrastructure Servers

    Firewall VM - pfSense Installation and Interface Configuration

    Download the pfSense CE (Community Edition) ISO to your hypervisor and proceed with the software installation.

    Suggested spec:

    • vCPU: 2
    • RAM: 2GB
    • Storage: 10GB
    • Network interfaces

      • Bridge device connected to lab-br
      • Bridge device connected to mgmt-br
      • Bridge device connected to hs-br

    The Firewall VM must be connected to all three Linux bridges on the hypervisor. Before beginning the installation, ensure that three virtual network interfaces of type "Bridge device" are configured. Each interface should be connected to a different bridge (lab-br, mgmt-br, and hs-br) as illustrated in the diagram below.

    After completing the installation, the setup wizard displays a menu with several options, such as "Assign Interfaces" and "Reboot System." During this phase, you must configure the network interfaces for the Firewall VM.

    1. Select Option 2: "Set interface(s) IP address" and configure the interfaces as follows:

      • WAN (lab-br) – Trusted LAN IP (Static/DHCP)
      • LAN (mgmt-br) – Static IP 10.0.110.254/24
      • OPT1 (hs-br) – Static IP 10.0.123.254/22
    2. Once the interface configuration is complete, use a web browser within the host management network to access the Firewall web interface and finalize the configuration.

    Next, proceed with installing the Jump VM. This VM serves as a platform for running a browser for accessing the firewall’s web interface (UI) for post-installation configuration.

    Jump VM

    Suggested specifications:

    • vCPU: 4
    • RAM: 8GB
    • Storage: 100GB
    • Network interface: Bridge device, connected to mgmt-br

    Procedure:

    1. Proceed with a standard Ubuntu 24.04 installation. Use the following login credentials across all hosts in this setup:

      Username

      Password

      depuser

      user

    2. Enable internet connectivity and DNS resolution by creating the following Netplan configuration:

      Note

      Use 10.0.110.254 as a temporary DNS nameserver until the MaaS VM is installed and configured. After completing the MaaS installation, update the Netplan file to replace this address with the MaaS IP: 10.0.110.252.

      Jump Node netplan

      Copy
      Copied!
                  

      network: ethernets: enp1s0: dhcp4: false addresses: [10.0.110.253/24] nameservers: search: [dpf.rdg.local.domain] addresses: [10.0.110.254] routes: - to: default via: 10.0.110.254 version: 2

    3. Apply the configuration:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ sudo netplan apply

    4. Update and upgrade the system:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ sudo apt update -y depuser@jump:~$ sudo apt upgrade -y

    5. Install and configure the Xfce desktop environment and XRDP (complementary packages for RDP):

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ sudo apt install -y xfce4 xfce4-goodies depuser@jump:~$ sudo apt install -y lightdm-gtk-greeter depuser@jump:~$ sudo apt install -y xrdp depuser@jump:~$ echo "xfce4-session" | tee .xsession depuser@jump:~$ sudo systemctl restart xrdp

    6. Install Firefox for accessing the Firewall web interface:

      Jump Node Console

      Copy
      Copied!
                  

      $ sudo apt install -y firefox

    7. Install and configure an NFS server with the /mnt/dpf_share directory:

      Jump Node Console

      Copy
      Copied!
                  

      $ sudo apt install -y nfs-server $ sudo mkdir -m 777 /mnt/dpf_share $ sudo vi /etc/exports

    8. Add the following line to /etc/exports:

      Jump Node Console

      Copy
      Copied!
                  

      /mnt/dpf_share 10.0.110.0/24(rw,sync,no_subtree_check)

    9. Restart the NFS server:

      Jump Node Console

      Copy
      Copied!
                  

      $ sudo systemctl restart nfs-server

    10. Create the directory bfb under /mnt/dpf_share with the same permissions as the parent directory:

      Jump Node Console

      Copy
      Copied!
                  

      $ sudo mkdir -m 777 /mnt/dpf_share/bfb

    11. Generate an SSH key pair for depuser in the jump node (later on will be imported to the admin user in MaaS to enable password-less login to the provisioned servers):

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ ssh-keygen -t rsa

    12. Reboot the jump node to display the graphical user interface:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ sudo reboot

      Note

      After setting up port-forwarding rules on the firewall (next steps), remote login to the graphical interface of the Jump node will be available.

      Concurrent login to the local graphical console and using RDP isn't possible, make sure to first log out from the local console when switching to RDP connection.

    Firewall VM – Web Configuration

    From your Jump node, open a Firefox web browser and navigate to the pfSense web UI (http://10.0.110.254. The default login credentials are admin/pfsense). The login page should appear as follows:

    Note

    The IP addresses from the trusted LAN network under "DNS servers" and "Interfaces - WAN" are blurred.

    image-2025-7-27_11-11-54-version-1-modificationdate-1753603914300-api-v2.png

    Proceed with the following configurations:

    Note

    The following screenshots display only a part of the configuration view. Make sure to not miss any of the steps mentioned below!

    • Interfaces:

      • WAN (lab-br) – mark “Enable interface”, unmark “Block private networks and loopback addresses”

    image-2025-5-16_14-18-48-version-1-modificationdate-1748173962817-api-v2.png

      • LAN (mgmt-br) – mark “Enable interface”, “IPv4 configuration type”: Static IPv4 ("IPv4 Address": 10.0.110.254/24, "IPv4 Upstream Gateway": None), “MTU”: 9000

    image-2025-5-16_14-22-11-version-1-modificationdate-1748173962487-api-v2.png

      • OPT1 (hs-br) – mark “Enable interface”, “IPv4 configuration type”: Static IPv4 ("IPv4 Address": 10.0.123.254/22, "IPv4 Upstream Gateway": None), “MTU”: 9000

    Firewall_LAN_Interface-version-1-modificationdate-1748173988567-api-v2.png

    • Firewall:

      • NAT -> Port Forward -> Add rule -> “Interface”: WAN, “Address Family”: IPv4, “Protocol”: TCP, “Destination”: WAN address, “Destination port range”: (“From port”: SSH, “To port”: SSH), “Redirect target IP”: (“Type”: Address or Alias, “Address”: 10.0.110.253), “Redirect target port”: SSH, “Description”: NAT SSH

        image-2025-5-16_14-26-40-version-1-modificationdate-1748173961767-api-v2.png

      • NAT -> Port Forward -> Add rule -> “Interface”: WAN, “Address Family”: IPv4, “Protocol”: TCP, “Destination”: WAN address, “Destination port range”: (“From port”: MS RDP, “To port”: MS RDP), “Redirect target IP”: (“Type”: Address or Alias, “Address”: 10.0.110.253), “Redirect target port”: MS RDP, “Description”: NAT RDP

        image-2025-5-16_14-27-16-version-1-modificationdate-1748173961473-api-v2.png

    image-2025-5-16_14-29-23-version-1-modificationdate-1748173960900-api-v2.png

      • Rules -> OPT1 -> Add rule -> “Action”: Pass , “Interface”: OPT1 , “Address Family”: IPv4+IPv6 , “Protocol”: Any , “Source”: Any , “Destination”: Any

        image-2025-5-16_14-30-22-version-1-modificationdate-1748173960577-api-v2.png

    MaaS VM

    Suggested specifications:

    • vCPU: 4
    • RAM: 4 GB
    • Storage: 100 GB
    • Network interface: Bridge device, connected to mgmt-br

    Procedure:

    1. Perform a regular Ubuntu installation on the MaaS VM.
    2. Create the following Netplan configuration to enable internet connectivity and DNS resolution:

      Note

      Use 10.0.110.254 as a temporary DNS nameserver. After the MaaS installation, replace this with the MaaS IP address (10.0.110.252) in both the Jump and MaaS VM Netplan files.

      MaaS netplan

      Copy
      Copied!
                  

      network: ethernets: enp1s0: dhcp4: false addresses: [10.0.110.252/24] nameservers: search: [dpf.rdg.local.domain] addresses: [10.0.110.254] routes: - to: default via: 10.0.110.254 version: 2

    3. Apply the netplan configuration:

      MaaS Console

      Copy
      Copied!
                  

      depuser@maas:~$ sudo netplan apply

    4. Update and upgrade the system:

      MaaS Console

      Copy
      Copied!
                  

      depuser@maas:~$ sudo apt update -y depuser@maas:~$ sudo apt upgrade -y

    5. Install PostgreSQL and configure the database for MaaS:

      MaaS Console

      Copy
      Copied!
                  

      $ sudo -i # apt install -y postgresql # systemctl disable --now systemd-timesyncd # export MAAS_DBUSER=maasuser # export MAAS_DBPASS=maaspass # export MAAS_DBNAME=maas # sudo -i -u postgres psql -c "CREATE USER \"$MAAS_DBUSER\" WITH ENCRYPTED PASSWORD '$MAAS_DBPASS'" # sudo -i -u postgres createdb -O "$MAAS_DBUSER" "$MAAS_DBNAME"

    6. Install MaaS:

      MaaS Console

      Copy
      Copied!
                  

      # snap install maas

    7. Initialize MaaS:

      MaaS Console

      Copy
      Copied!
                  

      # maas init region+rack --maas-url http://10.0.110.252:5240/MAAS --database-uri "postgres://$MAAS_DBUSER:$MAAS_DBPASS@localhost/$MAAS_DBNAME"

    8. Create an admin account:

      MaaS Console

      Copy
      Copied!
                  

      # maas createadmin --username admin --password admin --email admin@example.com

    9. Save the admin API key:

      MaaS Console

      Copy
      Copied!
                  

      # maas apikey --username admin > admin-apikey

    10. Log in to the MaaS server:

      MaaS Console

      Copy
      Copied!
                  

      # maas login admin http://localhost:5240/MAAS "$(cat admin-apikey)"

    11. Configure MaaS (Substitute <Trusted_LAN_NTP_IP> and <Trusted_LAN_DNS_IP> with the IP addresses in your environment):

      MaaS Console

      Copy
      Copied!
                  

      # maas admin domain update maas name="dpf.rdg.local.domain" # maas admin maas set-config name=ntp_servers value="<Trusted_LAN_NTP_IP>" # maas admin maas set-config name=network_discovery value="disabled" # maas admin maas set-config name=upstream_dns value="<Trusted_LAN_DNS_IP>" # maas admin maas set-config name=dnssec_validation value="no" # maas admin maas set-config name=default_osystem value="ubuntu"

    12. Define and configure IP ranges and subnets:

      MaaS Console

      Copy
      Copied!
                  

      # maas admin ipranges create type=dynamic start_ip="10.0.110.51" end_ip="10.0.110.120" # maas admin ipranges create type=dynamic start_ip="10.0.110.201" end_ip="10.0.110.240" # maas admin ipranges create type=reserved start_ip="10.0.110.10" end_ip="10.0.110.10" comment="c-plane VIP" # maas admin ipranges create type=reserved start_ip="10.0.110.200" end_ip="10.0.110.200" comment="kamaji VIP" # maas admin ipranges create type=reserved start_ip="10.0.110.251" end_ip="10.0.110.254" comment="dpfmgmt" # maas admin vlan update 0 untagged dhcp_on=True primary_rack=maas mtu=9000 # maas admin dnsresources create fqdn=kube-vip.dpf.rdg.local.domain ip_addresses=10.0.110.10 # maas admin dnsresources create fqdn=jump.dpf.rdg.local.domain ip_addresses=10.0.110.253 # maas admin dnsresources create fqdn=fw.dpf.rdg.local.domain ip_addresses=10.0.110.254 # maas admin fabrics create Success. Machine-readable output follows: { "class_type": null, "name": "fabric-1", "id": 1, ... # maas admin subnets create name="fake-dpf" cidr="20.20.20.0/24" fabric=1

    13. Configure static DHCP leases for the worker nodes (replace MAC address as appropriate with your workers DPU BMC/OOB interface MAC):

      MaaS Console

      Copy
      Copied!
                  

      # maas admin reserved-ips create ip="10.0.110.201" mac_address="58:a2:e1:73:6a:0b" comment="dpu-worker1-bmc" # maas admin reserved-ips create ip="10.0.110.211" mac_address="58:a2:e1:73:6a:0a" comment="dpu-worker1-oob" # maas admin reserved-ips create ip="10.0.110.202" mac_address="58:a2:e1:73:6a:7d" comment="dpu-worker2-bmc" # maas admin reserved-ips create ip="10.0.110.212" mac_address="58:a2:e1:73:6a:7c" comment="dpu-worker2-oob" # maas admin reserved-ips create ip="10.0.110.203" mac_address="58:a2:e1:73:6a:a7" comment="dpu-worker3-bmc" # maas admin reserved-ips create ip="10.0.110.213" mac_address="58:a2:e1:73:6a:a6" comment="dpu-worker3-oob" # maas admin reserved-ips create ip="10.0.110.204" mac_address="58:a2:e1:73:6a:dd" comment="dpu-worker4-bmc" # maas admin reserved-ips create ip="10.0.110.214" mac_address="58:a2:e1:73:6a:dc" comment="dpu-worker4-oob"

    14. Complete MaaS setup:

      1. Connect to the Jump node GUI and access the MaaS UI at http://10.0.110.252:5240/MAAS.
      2. On the first page, verify the "Region Name" and "DNS Forwarder," then continue.
      3. On the image selection page, select Ubuntu 24.04 LTS (amd64) and sync the image.

        maas_OS_Image_Mix_Good-version-1-modificationdate-1748173972987-api-v2.png

      4. Import the previously generated SSH key (id_rsa.pub) for the depuser into the MaaS admin user profile and finalize the setup.

        import_sshkey-version-1-modificationdate-1748173982207-api-v2.png

    15. Update the DNS nameserver IP address in the Netplan files for both the Jump and MaaS VMs from 10.0.110.254 to 10.0.110.252, then reapply the configuration.

    K8s Master VMs

    Suggested specifications:

    • vCPU: 8
    • RAM: 16GB
    • Storage: 100GB
    • Network interface: Bridge device, connected to mgmt-br
    1. Before provisioning the Kubernetes (K8s) Master VMs with MaaS, create the required virtual disks with empty storage. Use the following one-liner to create three 100 GB QCOW2 virtual disks:

      Hypervisor Console

      Copy
      Copied!
                  

      $ for i in $(seq 1 3); do qemu-img create -f qcow2 /var/lib/libvirt/images/master$i.qcow2 100G; done

      This command generates the following disks in the /var/lib/libvirt/images/ directory:

      • master1.qcow2
      • master2.qcow2
      • master3.qcow2
    2. Configure VMs in virt-manager:

      1. Open virt-manager and create three virtual machines:

        • Assign the corresponding virtual disk (master1.qcow2, master2.qcow2, or master3.qcow2) to each VM.
        • Configure each VM with the suggested specifications (vCPU, RAM, storage, and network interface).
      2. During the VM setup, ensure the NIC is selected under the Boot Options tab. This ensures the VMs can PXE boot for MaaS provisioning.
      3. Once the configuration is complete, shut down all the VMs.
    3. After the VMs are created and configured, proceed to provision them via the MaaS interface. MaaS will handle the OS installation and further setup as part of the deployment process.

    Provision Master VMs Using MaaS

    Install virsh and Set Up SSH Access

    1. SSH to the MaaS VM from the Jump node:

      MaaS Console

      Copy
      Copied!
                  

      depuser@jump:~$ ssh maas depuser@maas:~$ sudo -i

    2. Install the virsh client to communicate with the hypervisor:

      MaaS Console

      Copy
      Copied!
                  

      # apt install -y libvirt-clients

    3. Generate an SSH key for the root user and copy it to the hypervisor user in the libvirtd group:

      MaaS Console

      Copy
      Copied!
                  

      # ssh-keygen -t rsa # ssh-copy-id ubuntu@<hypervisor_MGMT_IP>

    4. Verify SSH access and virsh communication with the hypervisor:

      MaaS Console

      Copy
      Copied!
                  

      # virsh -c qemu+ssh://ubuntu@<hypervisor_MGMT_IP>/system list --all

      Expected output:

      MaaS Console

      Copy
      Copied!
                  

      Id Name State ------------------------------ 1 fw running 2 jump running 3 maas running - master1 shut off - master2 shut off - master3 shut off

    5. Copy the SSH key to the required MaaS directory (for snap-based installations):

      MaaS Console

      Copy
      Copied!
                  

      # mkdir -p /var/snap/maas/current/root/.ssh # cp .ssh/id_rsa* /var/snap/maas/current/root/.ssh/

    Get MAC Addresses of the Master VMs


    Retrieve the MAC addresses of the Master VMs:

    MaaS Console

    Copy
    Copied!
                

    # for i in $(seq 1 3); do virsh -c qemu+ssh://ubuntu@<hypervisor_MGMT_IP>/system dumpxml master$i | grep 'mac address'; done

    Example output:

    MaaS Console

    Copy
    Copied!
                

    <mac address='52:54:00:a9:9c:ef'/> <mac address='52:54:00:19:6b:4d'/> <mac address='52:54:00:68:39:7f'/>

    Add Master VMs to MaaS

    1. Add the Master VMs to MaaS:

      Info

      Once added, MaaS will automatically start the newly added VMs commissioning (discovery and introspection).

      MaaS Console

      Copy
      Copied!
                  

      # maas admin machines create hostname=master1 architecture=amd64/generic mac_addresses='52:54:00:a9:9c:ef' power_type=virsh power_parameters_power_address=qemu+ssh://ubuntu@<hypervisor_MGMT_IP>/system power_parameters_power_id=master1 skip_bmc_config=1 testing_scripts=none Success. Machine-readable output follows: { "description": "", "status_name": "Commissioning", ... "status": 1, ...    "system_id": "c3seyq", ...     "fqdn": "master1.dpf.rdg.local.domain",    "power_type": "virsh", ... "status_message": "Commissioning", "resource_uri": "/MAAS/api/2.0/machines/c3seyq/" }   # maas admin machines create hostname=master2 architecture=amd64/generic mac_addresses='52:54:00:19:6b:4d' power_type=virsh power_parameters_power_address=qemu+ssh://ubuntu@<hypervisor_MGMT_IP>/system power_parameters_power_id=master2 skip_bmc_config=1 testing_scripts=none   # maas admin machines create hostname=master3 architecture=amd64/generic mac_addresses='52:54:00:68:39:7f' power_type=virsh power_parameters_power_address=qemu+ssh://ubuntu@<hypervisor_MGMT_IP>/system power_parameters_power_id=master3 skip_bmc_config=1 testing_scripts=none

    2. Repeat the command for master2 and master3 with their respective MAC addresses.
    3. Verify commissioning by waiting for the status to change to "Ready" in MaaS.

      maas_masters_commission_virsh_updated-version-1-modificationdate-1748173981013-api-v2.png

      After commissioning, the next phase is deployment (OS provisioning).

    Configure Master VMs Network


    To ensure persistence across reboots, assign a static IP address to the management interface of the master nodes.

    For each Master VM:

    1. Navigate to Network and click "actions" near the management interface (a small arrowhead pointing down), then select "Edit Physical".

      1. Configure as follows:

        1. Subnet: 10.0.110.0/24
        2. IP Mode: Static Assign
        3. Address: Assign 10.0.110.1 for master1, 10.0.110.2 for master2, and 10.0.110.3 for master3.

          image-2025-5-5_22-22-37-version-1-modificationdate-1748173966197-api-v2.png

    2. Save the interface settings for each VM.
    Deploy Master VMs Using Cloud-Init

    1. Use the following cloud-init script to configure the necessary software and ensure persistency:

      Master nodes cloud-init

      Copy
      Copied!
                  

      #cloud-config system_info: default_user: name: depuser passwd: "$6$jOKPZPHD9XbG72lJ$evCabLvy1GEZ5OR1Rrece3NhWpZ2CnS0E3fu5P1VcZgcRO37e4es9gmriyh14b8Jx8gmGwHAJxs3ZEjB0s0kn/" lock_passwd: false groups: [adm, audio, cdrom, dialout, dip, floppy, lxd, netdev, plugdev, sudo, video] sudo: ["ALL=(ALL) NOPASSWD:ALL"] shell: /bin/bash ssh_pwauth: True package_upgrade: true runcmd: - apt-get update - apt-get -y install nfs-common

    2. Deploy the master VMs:

      1. Select all three Master VMs → ActionsDeploy.
      2. Toggle Cloud-init user-data and paste the cloud-init script.
      3. Start the deployment and wait for the status to change to "Ubuntu 24.04 LTS".

        maas_master_vms_deployment_before-version-1-modificationdate-1748173973947-api-v2.png

        image-2025-5-5_22-24-35-version-1-modificationdate-1748173965903-api-v2.png

    Verify Deployment

    • SSH into the Master VMs from the Jump node:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ ssh master1 depuser@master1:~$

    • Run sudo without a password:

      Master1 Console

      Copy
      Copied!
                  

      depuser@master1:~$ sudo -i root@master1:~#

    • Verify installed packages:

      Master1 Console

      Copy
      Copied!
                  

      root@master1:~# apt list --installed | egrep 'nfs-common' nfs-common/noble,now 1:2.6.4-3ubuntu5 amd64 [installed]

    • Reboot the Master VMs to complete the provisioning.

      Master1 Console

      Copy
      Copied!
                  

      root@master1:~# reboot

    Repeat the verification commands for master2 and master3.

    K8s Cluster Deployment and Configuration

    Kubespray Deployment and Configuration

    In this solution, the Kubernetes (K8s) cluster is deployed using a modified Kubespray (based on release v2.28.1) with a non-root depuser account from the Jump Node. The modifications in Kubespray are designed to meet the DPF prerequisites as described in the User Manual and facilitate cluster deployment and scaling.

    1. Download the modified Kubespray archive: modified_kubespray_v2.28.1.tar.gz.
    2. Extract the contents and navigate to the extracted directory:

      Jump Node Console

      Copy
      Copied!
                  

      $ tar -xzf /home/depuser/modified_kubespray_v2.28.1.tar.gz $ cd kubespray/ depuser@jump:~/kubespray$

    3. Set the K8s API VIP address and DNS record. Replace it with your own IP address and DNS record if different:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~/kubespray$ sed -i '/# kube_vip_address:/s/.*/kube_vip_address: 10.0.110.10/' inventory/mycluster/group_vars/k8s_cluster/addons.yml depuser@jump:~/kubespray$ sed -i '/apiserver_loadbalancer_domain_name:/s/.*/apiserver_loadbalancer_domain_name: "kube-vip.dpf.rdg.local.domain"/' roles/kubespray_defaults/defaults/main/main.yml

    4. Install the necessary dependencies and set up the Python virtual environment:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~/kubespray$ sudo apt -y install python3-pip jq python3.12-venv depuser@jump:~/kubespray$ python3 -m venv .venv depuser@jump:~/kubespray$ source .venv/bin/activate (.venv) depuser@jump:~/kubespray$ python3 -m pip install --upgrade pip (.venv) depuser@jump:~/kubespray$ pip install -U -r requirements.txt (.venv) depuser@jump:~/kubespray$ pip install ruamel-yaml

    5. Verify that the kube_network_plugin is set to flannel and that kube_proxy_remove is set to false in the inventory/mycluster/group_vars/k8s_cluster/k8s-cluster.yml file.

      inventory/mycluster/group_vars/k8s_cluster/k8s-cluster.yml

      Copy
      Copied!
                  

      [depuser@jump kubespray-2.28.0]$ vim inventory/mycluster/group_vars/k8s_cluster/k8s-cluster.yml ..... # Choose network plugin (cilium, calico, kube-ovn, weave or flannel. Use cni for generic cni plugin) # Can also be set to 'cloud', which lets the cloud provider setup appropriate routing kube_network_plugin: flannel .... # Kube-proxy proxyMode configuration. # Can be ipvs, iptables kube_proxy_remove: false kube_proxy_mode: ipvs .....

    6. Review and edit the inventory/mycluster/hosts.yaml file to define the cluster nodes. The following is the configuration for this deployment:

      inventory/mycluster/hosts.yaml

      Copy
      Copied!
                  

      all: hosts: master1: ansible_host: 10.0.110.1 ip: 10.0.110.1 access_ip: 10.0.110.1 node_labels: "k8s.ovn.org/zone-name": "master1" master2: ansible_host: 10.0.110.2 ip: 10.0.110.2 access_ip: 10.0.110.2 node_labels: "k8s.ovn.org/zone-name": "master2" master3: ansible_host: 10.0.110.3 ip: 10.0.110.3 access_ip: 10.0.110.3 node_labels: "k8s.ovn.org/zone-name": "master3"   children: kube_control_plane: hosts: master1: master2: master3: kube_node: hosts: etcd: hosts: master1: master2: master3: k8s_cluster: children: kube_control_plane:

    Deploying Cluster Using Kubespray Ansible Playbook

    1. Run the following command from the Jump Node to initiate the deployment process:

      Note

      Ensure you are in the Python virtual environment (.venv) when running the command.

      Jump Node Console

      Copy
      Copied!
                  

      (.venv) depuser@jump:~/kubespray$ ansible-playbook -i inventory/mycluster/hosts.yaml --become --become-user=root cluster.yml

    2. It takes a while for this deployment to complete. Make sure there are no errors. Successful result example:

      image-2025-9-8_11-23-47-version-1-modificationdate-1757319827297-api-v2.png

      Tip

      It is recommended to keep the shell from which Kubespray has been running open, later on it will be useful when performing cluster scale out to add the worker nodes.

    K8s Deployment Verification

    To simplify managing the K8s cluster from the Jump Host, set up kubectl with bash auto-completion.

    1. Copy kubectl and the kubeconfig file from master1 to the Jump Host:

      Jump Node Console

      Copy
      Copied!
                  

      ## Connect to master1 depuser@jump:~$ ssh master1 depuser@master1:~$ cp /usr/local/bin/kubectl /tmp/ depuser@master1:~$ sudo cp /root/.kube/config /tmp/kube-config depuser@master1:~$ sudo chmod 644 /tmp/kube-config

    2. In another terminal tab, copy the files to the Jump Host:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ scp master1:/tmp/kubectl /tmp/ depuser@jump:~$ sudo chown root:root /tmp/kubectl depuser@jump:~$ sudo mv /tmp/kubectl /usr/local/bin/ depuser@jump:~$ mkdir -p ~/.kube depuser@jump:~$ scp master1:/tmp/kube-config ~/.kube/config depuser@jump:~$ chmod 600 ~/.kube/config

    3. Enable bash auto-completion for kubectl:

      1. Verify if bash-completion is installed:

        Jump Node Console

        Copy
        Copied!
                    

        depuser@jump:~$ type _init_completion

        If installed, the output includes:

        Jump Node Console

        Copy
        Copied!
                    

        _init_completion is a function

      2. If not installed, install it:

        Jump Node Console

        Copy
        Copied!
                    

        depuser@jump:~$ sudo apt install -y bash-completion

      3. Set up the kubectl completion script:

        Jump Node Console

        Copy
        Copied!
                    

        depuser@jump:~$ kubectl completion bash | sudo tee /etc/bash_completion.d/kubectl > /dev/null depuser@jump:~$ bash

    4. Check the status of the nodes in the cluster:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ kubectl get nodes

      Expected output:

      Jump Node Console

      Copy
      Copied!
                  

      NAME STATUS ROLES AGE VERSION master1 Ready control-plane 6m v1.31.12 master2 Ready control-plane 6m v1.31.12 master3 Ready control-plane 7m v1.31.12

    5. Check the pods in all namespaces:

      Jump Node Console

      Copy
      Copied!
                  

      depuser@jump:~$ kubectl get pods -A

      Expected output:

      Jump Node Console

      Copy
      Copied!
                  

      [depuser@setup5-jump ~]$ kubectl get pods -A NAMESPACE NAME READY STATUS RESTARTS AGE kube-system coredns-d665d669-l4xpx 1/1 Running 0 12m kube-system coredns-d665d669-vzb8s 1/1 Running 0 12m kube-system dns-autoscaler-79f85f486f-4m97k 1/1 Running 0 12m kube-system kube-apiserver-master1 1/1 Running 0 13m kube-system kube-apiserver-master2 1/1 Running 0 13m kube-system kube-apiserver-master3 1/1 Running 0 13m kube-system kube-controller-manager-master1 1/1 Running 1 13m kube-system kube-controller-manager-master2 1/1 Running 1 13m kube-system kube-controller-manager-master3 1/1 Running 1 13m kube-system kube-flannel-87xxp 1/1 Running 0 12m kube-system kube-flannel-f9cdj 1/1 Running 0 12m kube-system kube-flannel-w5qdx 1/1 Running 0 12m kube-system kube-proxy-jjfpc 1/1 Running 0 13m kube-system kube-proxy-kqxdz 1/1 Running 0 13m kube-system kube-proxy-t7hmt 1/1 Running 0 13m kube-system kube-scheduler-master1 1/1 Running 1 13m kube-system kube-scheduler-master2 1/1 Running 1 13m kube-system kube-scheduler-master3 1/1 Running 1 13m kube-system kube-vip-master1 1/1 Running 0 13m kube-system kube-vip-master2 1/1 Running 0 13m kube-system kube-vip-master3 1/1 Running 0 13m

    DPF Installation

    Software Prerequisites and Required Variables

    1. Start by installing the remaining software perquisites.

      Jump Node Console

      Copy
      Copied!
                  

      ## Connect to master1 to copy helm client utility that was installed during kubespray deployment $ depuser@jump:~$ ssh master1 depuser@master1:~$ cp /usr/local/bin/helm /tmp/   ## In another tab depuser@jump:~$ scp master1:/tmp/helm /tmp/ depuser@jump:~$ sudo chown root:root /tmp/helm depuser@jump:~$ sudo mv /tmp/helm /usr/local/bin/   ## Verify that envsubst utility is installed depuser@jump:~$ which envsubst /usr/bin/envsubst

    2. Proceed to clone the doca-platform Git repository:

      Jump Node Console

      Copy
      Copied!
                  

      $ git clone https://github.com/NVIDIA/doca-platform.git

    3. Change directory to doca-platform and checkout to tag v25.7.0:

      Jump Node Console

      Copy
      Copied!
                  

      $ cd doca-platform/ $ git checkout v25.7.0

    4. Change directory to readme.md from where all the commands will be run:

      Jump Node Console

      Copy
      Copied!
                  

      $ cd docs/public/user-guides/zero-trust/use-cases/hbn/

    5. Modify the variables in manifests/00-env-vars/envvars.env to fit your environment, then source the file:

      Warning

      Replace the values for the variables in the following file with the values that fit your setup. Specifically, pay attention to DPUCLUSTER_INTERFACE and BMC_ROOT_PASSWORD.

      manifests/00-env-vars/envvars.env

      Copy
      Copied!
                  

      ## IP Address for the Kubernetes API server of the target cluster on which DPF is installed. ## This should never include a scheme or a port. ## e.g. 10.10.10.10 export TARGETCLUSTER_API_SERVER_HOST=10.0.110.10   ## Virtual IP used by the load balancer for the DPU Cluster. Must be a reserved IP from the management subnet and not ## allocated by DHCP. export DPUCLUSTER_VIP=10.0.110.200   ## Interface on which the DPUCluster load balancer will listen. Should be the management interface of the control plane node. export DPUCLUSTER_INTERFACE=eno1   ## IP address to the NFS server used as storage for the BFB. export NFS_SERVER_IP=10.0.110.253   ## The repository URL for the NVIDIA Helm chart registry. ## Usually this is the NVIDIA Helm NGC registry. For development purposes, this can be set to a different repository. export HELM_REGISTRY_REPO_URL=https://helm.ngc.nvidia.com/nvidia/doca   ## The repository URL for the HBN container image. ## Usually this is the NVIDIA NGC registry. For development purposes, this can be set to a different repository. export HBN_NGC_IMAGE_URL=nvcr.io/nvidia/doca/doca_hbn   ## The DPF REGISTRY is the Helm repository URL where the DPF Operator Chart resides. ## Usually this is the NVIDIA Helm NGC registry. For development purposes, this can be set to a different repository. export REGISTRY=https://helm.ngc.nvidia.com/nvidia/doca   ## The DPF TAG is the version of the DPF components which will be deployed in this guide. export TAG=v25.7.0   ## URL to the BFB used in the `bfb.yaml` and linked by the DPUSet. export BFB_URL="https://content.mellanox.com/BlueField/BFBs/Ubuntu22.04/bf-bundle-3.1.0-76_25.07_ubuntu-22.04_prod.bfb"   ## IP_RANGE_START and IP_RANGE_END ## These define the IP range for DPU discovery via Redfish/BMC interfaces ## Example: If your DPUs have BMC IPs in range 10.0.110.201-240 ## export IP_RANGE_START=10.0.110.201 ## export IP_RANGE_END=10.0.110.204   ## Start of DPUDiscovery IpRange export IP_RANGE_START=10.0.110.201   ## End of DPUDiscovery IpRange export IP_RANGE_END=10.0.110.204   # The password used for DPU BMC root login, must be the same for all DPUs # For more information on how to set the BMC root password refer to BlueField DPU Administrator Quick Start Guide.  export BMC_ROOT_PASSWORD=<set your BMC_ROOT_PASSWORD>   ## Serial number of DPUs. If you have more than 2 DPUs, you will need to parameterize the system accordingly and expose ## additional variables. ## All serial numbers must be in lowercase.   ## Serial number of DPU1 export DPU1_SERIAL=mt2402xz0f7x   ## Serial number of DPU2 export DPU2_SERIAL=mt2402xz0f80   ## Serial number of DPU3 export DPU3_SERIAL=mt2402xz0f8g   ## Serial number of DPU4 export DPU4_SERIAL=mt2402xz0f9n

    6. Export environment variables for the installation:

      Jump Node Console

      Copy
      Copied!
                  

      $ source manifests/00-env-vars/envvars.env

    DPF Operator Installation

    Create Storage Required by the DPF Operator

    • Create the NS for the operator:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl create ns dpf-operator-system

    • The following YAML file defines storage (for the BFB image) that is required by the DPF operator.

      manifests/01-dpf-operator-installation/nfs-storage-for-bfb-dpf-ga.yaml

      Copy
      Copied!
                  

      --- apiVersion: v1 kind: PersistentVolume metadata: name: bfb-pv spec: capacity: storage: 10Gi volumeMode: Filesystem accessModes: - ReadWriteMany nfs: path: /mnt/dpf_share/bfb server: $NFS_SERVER_IP persistentVolumeReclaimPolicy: Delete --- apiVersion: v1 kind: PersistentVolumeClaim metadata: name: bfb-pvc namespace: dpf-operator-system spec: accessModes: - ReadWriteMany resources: requests: storage: 10Gi volumeMode: Filesystem storageClassName: ""

    • Run the following command to substitute the environment variables using envsubst and apply the yaml file:

      Jump Node Console

      Copy
      Copied!
                  

      $ cat manifests/01-dpf-operator-installation/*.yaml | envsubst | kubectl apply -f -

    Create DPU BMC shared password secret

    In Zero Trust mode, provisioning DPUs requires authentication with Redfish. In order to do that, you must set the same root password to access the BMC for all DPUs DPF is going to manage.

    For more information on how to set the BMC root password refer to BlueField DPU Administrator Quick Start Guide.

    1. Connect to the first DPU BMC over SSH to change the BMC root's password:

      Jump Node Console

      Copy
      Copied!
                  

      $ ssh root@10.0.110.201 root@10.0.110.201's password: <BMC Root Password. Default root/0penBmc. need to change first time to $BMC_ROOT_PASSWORD in the manifests/00-env-vars/envvars.env file>

    2. Verify that the rshim service is runnging or run if not.

      Jump Node Console

      Copy
      Copied!
                  

      root@dpu-bmc:~# systemctl status rshim * rshim.service - rshim driver for BlueField SoC Loaded: loaded (/usr/lib/systemd/system/rshim.service; enabled; preset: disabled) Active: active (running) since Mon 2025-07-14 13:21:34 UTC; 18h ago Docs: man:rshim(8) Process: 866 ExecStart=/usr/sbin/rshim $OPTIONS (code=exited, status=0/SUCCESS) Main PID: 874 (rshim) CPU: 2h 43min 44.730s CGroup: /system.slice/rshim.service `-874 /usr/sbin/rshim   Jul 14 13:21:34 dpu-bmc (rshim)[866]: rshim.service: Referenced but unset environment variable evaluates to an empty string: OPTIONS Jul 14 13:21:34 dpu-bmc rshim[874]: Created PID file: /var/run/rshim.pid Jul 14 13:21:34 dpu-bmc rshim[874]: USB device detected Jul 14 13:21:38 dpu-bmc rshim[874]: Probing usb-2.1 Jul 14 13:21:38 dpu-bmc rshim[874]: create rshim usb-2.1 Jul 14 13:21:39 dpu-bmc rshim[874]: rshim0 attached   root@dpu-bmc:~# ls /dev/rshim0 boot console misc rshim   # To start the rshim, if not runnging  root@dpu-bmc:~# systemctl enable rshim root@dpu-bmc:~# systemctl start rshim root@dpu-bmc:~# systemctl status rshim root@dpu-bmc:~# ls /dev/rshim0 root@dpu-bmc:~# exit

    3. Repeat the step 3-4 on all your DPUs.

    The password is provided to DPF by creating the following secret:

    Note

    It is necessary to set several environment variables before running this command.

    $ source manifests/00-env-vars/envvars.env

    Jump Node Console

    Copy
    Copied!
                

    $ kubectl create secret generic -n dpf-operator-system bmc-shared-password --from-literal=password=$BMC_ROOT_PASSWORD

    Additional Dependencies

    1. The DPF Operator requires several prerequisite components to function properly in a Kubernetes environment. Starting with DPF v25.7, all Helm dependencies have been removed from the DPF chart. This means that all dependencies must be installed manually before installing the DPF chart itself. The following commands describe an opiniated approach to install those dependencies (for more information, check: Helm Prerequisites - NVIDIA Docs).

      1. Install helmfile binary:

        Jump Node Console

        Copy
        Copied!
                    

        $ wget https://github.com/helmfile/helmfile/releases/download/v1.1.2/helmfile_1.1.2_linux_amd64.tar.gz $ tar -xvf helmfile_1.1.2_linux_amd64.tar.gz $ sudo mv ./helmfile /usr/local/bin/

      2. Change directory to doca-platform:

        Tip

        Use another shell from the one where you run all the other installation commands for DPF.

        Jump Node Console

        Copy
        Copied!
                    

        $ cd /home/depuser/doca-platform

      3. Change directory to deploy/helmfiles/ from where the prerequisites will be installed:

        Jump Node Console

        Copy
        Copied!
                    

        $ cd deploy/helmfiles/

      4. Install local-path-provisioner manually using the following commands:

        Jump Node Console

        Copy
        Copied!
                    

        $ curl https://codeload.github.com/rancher/local-path-provisioner/tar.gz/v0.0.31 | tar -xz --strip=3 local-path-provisioner-0.0.31/deploy/chart/local-path-provisioner/ $ kubectl create ns local-path-provisioner $ helm upgrade --install -n local-path-provisioner local-path-provisioner ./local-path-provisioner --version 0.0.31 \ --set 'tolerations[0].key=node-role.kubernetes.io/control-plane' \ --set 'tolerations[0].operator=Exists' \ --set 'tolerations[0].effect=NoSchedule' \ --set 'tolerations[1].key=node-role.kubernetes.io/master' \ --set 'tolerations[1].operator=Exists' \ --set 'tolerations[1].effect=NoSchedule'

      5. Ensure that the pod in local-path-provisioner namespace is in ready state:

        Jump Node Console

        Copy
        Copied!
                    

        $ kubectl wait --for=condition=ready --namespace local-path-provisioner pods --all pod/local-path-provisioner-59d776bf47-7qbql condition met

      6. Install Helm dependencies using the following commands:

        Jump Node Console

        Copy
        Copied!
                    

        $ helmfile init --force $ helmfile apply -f prereqs.yaml --color --suppress-diff --skip-diff-on-install --concurrency 0 --hide-notes   ..... UPDATED RELEASES: NAME NAMESPACE CHART VERSION DURATION node-feature-discovery dpf-operator-system node-feature-discovery/node-feature-discovery 0.17.1 24s cert-manager cert-manager jetstack/cert-manager v1.18.1 38s argo-cd dpf-operator-system argoproj/argo-cd 7.8.2 1m42s maintenance-operator dpf-operator-system oci://ghcr.io/mellanox/maintenance-operator-chart 0.2.0 26s kamaji dpf-operator-system oci://ghcr.io/nvidia/charts/kamaji 1.1.0 2m48s

    2. Ensure that the KUBERNETES_SERVICE_HOST and KUBERNETES_SERVICE_PORT environment variables are set in the node-feature-discovery-worker DaemonSet:

      Note

      Run this command from the previous shell where the environment variables were exported.

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl -n dpf-operator-system set env daemonset/node-feature-discovery-worker \ KUBERNETES_SERVICE_HOST=$TARGETCLUSTER_API_SERVER_HOST \ KUBERNETES_SERVICE_PORT=$TARGETCLUSTER_API_SERVER_PORT

    DPF Operator Deployment

    1. Run the following commands to substitute the environment variables and install the DPF Operator:

      Jump Node Console

      Copy
      Copied!
                  

      $ helm repo add --force-update dpf-repository ${REGISTRY} $ helm repo update $ helm upgrade --install -n dpf-operator-system dpf-operator dpf-repository/dpf-operator --version=$TAG   Release "dpf-operator" does not exist. Installing it now. I0908 15:14:00.596313 78290 warnings.go:110] "Warning: spec.template.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[0].matchExpressions[0].key: node-role.kubernetes.io/master is use \"node-role.kubernetes.io/control-plane\" instead" I0908 15:14:00.630482 78290 warnings.go:110] "Warning: spec.jobTemplate.spec.template.spec.affinity.nodeAffinity.requiredDuringSchedulingIgnoredDuringExecution.nodeSelectorTerms[0].matchExpressions[0].key: node-role.kubernetes.io/master is use \"node-role.kubernetes.io/control-plane\" instead" NAME: dpf-operator LAST DEPLOYED: Mon Sep 8 15:13:58 2025 NAMESPACE: dpf-operator-system STATUS: deployed REVISION: 1 TEST SUITE: None

    2. Verify the DPF Operator installation by ensuring the deployment is available and all the pods are ready:

      Note

      The following verification commands may need to be run multiple times to ensure the conditions are met.

      Jump Node Console

      Copy
      Copied!
                  

      ## Ensure the DPF Operator deployment is available. $ kubectl rollout status deployment --namespace dpf-operator-system dpf-operator-controller-manager deployment "dpf-operator-controller-manager" successfully rolled out   ## Ensure all pods in the DPF Operator system are ready. $ kubectl wait --for=condition=ready --namespace dpf-operator-system pods --all pod/argo-cd-argocd-application-controller-0 condition met pod/argo-cd-argocd-redis-6c6b84f6fb-ljb27 condition met pod/argo-cd-argocd-repo-server-65cfb96746-hnsxv condition met pod/argo-cd-argocd-server-5bbdb4b6b9-dtp4x condition met pod/dpf-operator-controller-manager-5dd7555c6d-469kx condition met pod/kamaji-95587fbc7-bfkww condition met pod/kamaji-etcd-0 condition met pod/kamaji-etcd-1 condition met pod/kamaji-etcd-2 condition met pod/maintenance-operator-74bd5774b7-c4d6f condition met pod/node-feature-discovery-gc-6b48f49cc4-hfgmw condition met pod/node-feature-discovery-master-747d789485-ct9hx condition met

    DPF System Installation

    This section involves creating the DPF system components and some basic infrastructure required for a functioning DPF-enabled cluster.

    1. Change directory back to :

      Jump Node Console

      Copy
      Copied!
                  

      $ cd /home/depuser/doca-platform/docs/public/user-guides/zero-trust/use-cases/hbn/

    2. The following YAML files define the DPFOperatorConfig to install the DPF System components, the DPUCluster to serve as the Kubernetes control plane for DPU nodes, and DPUDiscovery to discover DPUDevices and DPUNodes.

      Note

      Note that to achieve high performance results you need to adjust the operatorconfig.yaml to support MTU 9000.

      Note that we deploy BareMetal ZT mode and we need to add dpuDetectordisable parameter.

      manifests/02-dpf-system-installation/operatorconfig.yaml

      Copy
      Copied!
                  

      --- apiVersion: operator.dpu.nvidia.com/v1alpha1 kind: DPFOperatorConfig metadata: name: dpfoperatorconfig namespace: dpf-operator-system spec: dpuDetector: disable: true provisioningController: bfbPVCName: "bfb-pvc" dmsTimeout: 900 installInterface: installViaRedfish: # Set this to the IP of one of your control plane nodes + 8080 port bfbRegistryAddress: "$TARGETCLUSTER_API_SERVER_HOST:8080" kamajiClusterManager: disable: false  networking: highSpeedMTU: 9000

      manifests/02-dpf-system-installation/dpucluster.yaml

      Copy
      Copied!
                  

      --- apiVersion: provisioning.dpu.nvidia.com/v1alpha1 kind: DPUCluster metadata: name: dpu-cplane-tenant1 namespace: dpu-cplane-tenant1 spec: type: kamaji maxNodes: 10 clusterEndpoint: # deploy keepalived instances on the nodes that match the given nodeSelector. keepalived: # interface on which keepalived will listen. Should be the oob interface of the control plane node. interface: $DPUCLUSTER_INTERFACE # Virtual IP reserved for the DPU Cluster load balancer. Must not be allocatable by DHCP. vip: $DPUCLUSTER_VIP # virtualRouterID must be in range [1,255], make sure the given virtualRouterID does not duplicate with any existing keepalived process running on the host virtualRouterID: 126 nodeSelector: node-role.kubernetes.io/control-plane: ""

      manifests/02-dpf-system-installation/dpudiscovery.yaml

      Copy
      Copied!
                  

      --- apiVersion: provisioning.dpu.nvidia.com/v1alpha1 kind: DPUDiscovery metadata: name: dpu-discovery namespace: dpf-operator-system spec: # Define the IP range to scan ipRangeSpec: ipRange: startIP: $IP_RANGE_START endIP: $IP_RANGE_END # Optional: Set scan interval scanInterval: "60m"

    3. Create NS for the Kubernetes control plane of the DPU nodes:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl create ns dpu-cplane-tenant1

    4. Apply the previous YAML files:

      Jump Node Console

      Copy
      Copied!
                  

      $ cat manifests/02-dpf-system-installation/*.yaml | envsubst | kubectl apply -f -

    5. Verify the DPF system by ensuring that the provisioning and DPUService controller manager deployments are available, that all other deployments in the DPF Operator system are available, and that the DPUCluster is ready for nodes to join.

      Jump Node Console

      Copy
      Copied!
                  

      ## Ensure the provisioning and DPUService controller manager deployments are available. $ kubectl rollout status deployment --namespace dpf-operator-system dpf-provisioning-controller-manager dpuservice-controller-manager   deployment "dpf-provisioning-controller-manager" successfully rolled out deployment "dpuservice-controller-manager" successfully rolled out   ## Ensure all other deployments in the DPF Operator system are Available. $ kubectl rollout status deployment --namespace dpf-operator-system   deployment "argo-cd-argocd-applicationset-controller" successfully rolled out deployment "argo-cd-argocd-redis" successfully rolled out deployment "argo-cd-argocd-repo-server" successfully rolled out deployment "argo-cd-argocd-server" successfully rolled out deployment "dpf-operator-controller-manager" successfully rolled out deployment "dpf-provisioning-controller-manager" successfully rolled out deployment "dpuservice-controller-manager" successfully rolled out deployment "kamaji" successfully rolled out deployment "kamaji-cm-controller-manager" successfully rolled out deployment "maintenance-operator" successfully rolled out deployment "node-feature-discovery-gc" successfully rolled out deployment "node-feature-discovery-master" successfully rolled out deployment "servicechainset-controller-manager" successfully rolled out   ## Ensure the DPUCluster is ready for nodes to join. $ kubectl wait --for=condition=ready --namespace dpu-cplane-tenant1 dpucluster --all   dpucluster.provisioning.dpu.nvidia.com/dpu-cplane-tenant1 condition met


    6. Verify the DPF system by ensuring that the DPUDevices exist:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl get dpudevices -n dpf-operator-system NAME AGE mt2402xz0f7x 2m13s mt2402xz0f80 2m12s mt2402xz0f8g 2m10s mt2402xz0f9n 2m11s

    7. Verify the DPF system by ensuring that the DPUNodes exist.

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl get dpunodes -n dpf-operator-system NAME AGE dpu-node-mt2402xz0f7x 2m23s dpu-node-mt2402xz0f80 2m22s dpu-node-mt2402xz0f8g 2m20s dpu-node-mt2402xz0f9n 2m21s

    Congratulations, the DPF system has been successfully installed!

    Verification

    1. Use the following YAML to define a BFB resource that downloads the Bluefield Bitstream to a shared volume:

      manifests/03.1-dpudeployment-installation-pf/bfb.yaml

      Copy
      Copied!
                  

      --- apiVersion: provisioning.dpu.nvidia.com/v1alpha1 kind: BFB metadata: name: bf-bundle namespace: dpf-operator-system spec: url: $BFB_URL

    2. Run the command to create the BFB:

      Jump Node Console

      Copy
      Copied!
                  

      $ cat manifests/03.1-dpudeployment-installation-pf/bfb.yaml | envsubst |kubectl apply -f -

    3. Create the following YAML to define a DPUSet:

      manifests/03.1-dpudeployment-installation-pf/create-dpu-set.yaml

      Copy
      Copied!
                  

      --- apiVersion: provisioning.dpu.nvidia.com/v1alpha1 kind: DPUSet metadata: name: dpuset namespace: dpf-operator-system spec: dpuNodeSelector: matchLabels: feature.node.kubernetes.io/dpu-enabled: "true" strategy: rollingUpdate: maxUnavailable: "10%" type: RollingUpdate dpuTemplate: spec: dpuFlavor: dpf-provisioning-hbn-ovn bfb: name: bf-bundle nodeEffect: noEffect: true

    4. Run the command to create a DPUSet:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl apply -f manifests/03.1-dpudeployment-installation-pf/create-dpu-set.yaml

    5. To follow the progress of DPU provisioning, run the following command to check its current phase:

      Jump Node Console

      Copy
      Copied!
                  

      $ watch -n10 "kubectl describe dpu -n dpf-operator-system | grep 'Node Name\|Type\|Last\|Phase'" Every 10.0s: kubectl describe dpu -n dpf-operator-system | grep 'Node Name\|Type\|Last\|Phase'                                                                     Dpu Node Name: dpu-node-mt2402xz0f7x Last Transition Time: 2025-09-08T13:25:38Z Type: Initialized Last Transition Time: 2025-09-08T13:25:38Z Type: BFBReady Last Transition Time: 2025-09-08T13:25:38Z Type: NodeEffectReady Last Transition Time: 2025-09-08T13:25:44Z Type: InterfaceInitialized Last Transition Time: 2025-09-08T13:25:49Z Type: FWConfigured Last Transition Time: 2025-09-08T13:25:51Z Type: BFBPrepared Last Transition Time: 2025-09-08T13:36:29Z Type: OSInstalled Last Transition Time: 2025-09-08T13:39:33Z Type: Rebooted Phase: Rebooting Dpu Node Name: dpu-node-mt2402xz0f80 Last Transition Time: 2025-09-08T13:25:38Z Type: Initialized Last Transition Time: 2025-09-08T13:25:38Z Type: BFBReady Last Transition Time: 2025-09-08T13:25:38Z Type: NodeEffectReady Last Transition Time: 2025-09-08T13:25:47Z Type: InterfaceInitialized Last Transition Time: 2025-09-08T13:25:50Z Type: FWConfigured Last Transition Time: 2025-09-08T13:25:51Z Type: BFBPrepared Last Transition Time: 2025-09-08T13:37:01Z Type: OSInstalled Last Transition Time: 2025-09-08T13:40:02Z Type: Rebooted .....

    6. Wait for the Rebooted stage and then Power Cycle the bare-metal host manual.

      After the DPU is up, run following command for each DPU worker:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl annotate dpunodes -n dpf-operator-system dpu-node-mt2402xz0f7x provisioning.dpu.nvidia.com/dpunode-external-reboot-required- dpunode.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f7x annotated   $ kubectl annotate dpunodes -n dpf-operator-system dpu-node-mt2402xz0f80 provisioning.dpu.nvidia.com/dpunode-external-reboot-required- dpunode.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f80 annotated   $ kubectl annotate dpunodes -n dpf-operator-system dpu-node-mt2402xz0f8g provisioning.dpu.nvidia.com/dpunode-external-reboot-required- dpunode.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f8g annotated   $ kubectl annotate dpunodes -n dpf-operator-system dpu-node-mt2402xz0f9n provisioning.dpu.nvidia.com/dpunode-external-reboot-required- dpunode.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f9n annotated

    7. At this point, the DPU workers should be added to the cluster. As they being added to the cluster, the DPUs are provisioned.

      Jump Node Console

      Copy
      Copied!
                  

      $ watch -n10 "kubectl describe dpu -n dpf-operator-system | grep 'Node Name\|Type\|Last\|Phase'" Every 10.0s: kubectl describe dpu -n dpf-operator-system | grep 'Node Name\|Type\|Last\|Phase'                                                                     Dpu Node Name: dpu-node-mt2402xz0f7x Type: InternalIP Type: Hostname Last Transition Time: 2025-09-08T13:25:38Z Type: Initialized Last Transition Time: 2025-09-08T13:25:38Z Type: BFBReady Last Transition Time: 2025-09-08T13:25:38Z Type: NodeEffectReady Last Transition Time: 2025-09-08T13:25:44Z Type: InterfaceInitialized Last Transition Time: 2025-09-08T13:25:49Z Type: FWConfigured Last Transition Time: 2025-09-08T13:25:51Z Type: BFBPrepared Last Transition Time: 2025-09-08T13:36:29Z Type: OSInstalled Last Transition Time: 2025-09-08T14:09:51Z Type: Rebooted Last Transition Time: 2025-09-08T14:09:51Z Type: DPUClusterReady Last Transition Time: 2025-09-08T14:09:52Z Type: Ready Phase: Ready Dpu Node Name: dpu-node-mt2402xz0f80 Type: InternalIP Type: Hostname Last Transition Time: 2025-09-08T13:25:38Z Type: Initialized Last Transition Time: 2025-09-08T13:25:38Z Type: BFBReady Last Transition Time: 2025-09-08T13:25:38Z Type: NodeEffectReady Last Transition Time: 2025-09-08T13:25:47Z Type: InterfaceInitialized Last Transition Time: 2025-09-08T13:25:50Z Type: FWConfigured Last Transition Time: 2025-09-08T13:25:51Z Type: BFBPrepared Last Transition Time: 2025-09-08T13:37:01Z Type: OSInstalled Last Transition Time: 2025-09-08T14:10:04Z Type: Rebooted Last Transition Time: 2025-09-08T14:10:04Z Type: DPUClusterReady Last Transition Time: 2025-09-08T14:10:04Z Type: Ready .....

    8. Finally, validate that all the different DPU-related objects are now in the Ready state:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl get secrets -n dpu-cplane-tenant1 dpu-cplane-tenant1-admin-kubeconfig -o json | jq -r '.data["admin.conf"]' | base64 --decode > /home/depuser/dpu-cluster.config   $ echo "alias ki='KUBECONFIG=/home/depuser/dpu-cluster.config kubectl'" >> ~/.bashrc $ echo 'alias dpfctl="kubectl -n dpf-operator-system exec deploy/dpf-operator-controller-manager -- /dpfctl "' >> ~/.bashrc   $ dpfctl describe dpudeployments NAME NAMESPACE STATUS REASON SINCE MESSAGE DPFOperatorConfig/dpfoperatorconfig dpf-operator-system Ready: True Success 21m   $ ki get node -A NAME STATUS ROLES AGE VERSION dpu-node-mt2402xz0f7x-mt2402xz0f7x Ready <none> 25m v1.33.2 dpu-node-mt2402xz0f80-mt2402xz0f80 Ready <none> 25m v1.33.2 dpu-node-mt2402xz0f8g-mt2402xz0f8g Ready <none> 25m v1.33.2 dpu-node-mt2402xz0f9n-mt2402xz0f9n Ready <none> 25m v1.33.2   $ kubectl get dpu -A NAMESPACE NAME READY PHASE AGE dpf-operator-system dpu-node-mt2402xz0f7x-mt2402xz0f7x True Ready 47m dpf-operator-system dpu-node-mt2402xz0f80-mt2402xz0f80 True Ready 47m dpf-operator-system dpu-node-mt2402xz0f8g-mt2402xz0f8g True Ready 47m dpf-operator-system dpu-node-mt2402xz0f9n-mt2402xz0f9n True Ready 47m     $ kubectl wait --for=condition=ready --namespace dpf-operator-system dpu --all dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f7x-mt2402xz0f7x condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f80-mt2402xz0f80 condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f8g-mt2402xz0f8g condition met dpu.provisioning.dpu.nvidia.com/dpu-node-mt2402xz0f9n-mt2402xz0f9n condition met

    9. Run the command to delete a DPUSet and BFB:

      Jump Node Console

      Copy
      Copied!
                  

      $ kubectl delete -f manifests/03.1-dpudeployment-installation-pf/create-dpu-set.yaml dpuset.provisioning.dpu.nvidia.com "dpuset" deleted   $ cat manifests/03.1-dpudeployment-installation-pf/bfb.yaml | envsubst |kubectl delete -f - bfb.provisioning.dpu.nvidia.com "bf-bundle" deleted

    Optional

    To deploy DPF Zero Trust (DPF-ZT) with:

    Authors

    BK-version-2-modificationdate-1697457536297-api-v2.jpg

    Boris Kovalev

    Boris Kovalev has worked for the past several years as a Solutions Architect, focusing on NVIDIA Networking/Mellanox technology, and is responsible for complex machine learning, Big Data and advanced VMware-based cloud research and design. Boris previously spent more than 20 years as a senior consultant and solutions architect at multiple companies, most recently at VMware. He has written multiple reference designs covering VMware, machine learning, Kubernetes, and container solutions which are available at the NVIDIA Documents website.

    NVIDIA, the NVIDIA logo, and BlueField are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated. TM

    © 2025 NVIDIA Corporation. All rights reserved.

    This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality. NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice. Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete. NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

    Last updated on May 29, 2025.