Customization Configs Resource#

class nemo_microservices.resources.customization.ConfigsResource(client: NeMoMicroservices)#

Bases: SyncAPIResource

property with_raw_response: ConfigsResourceWithRawResponse#

This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content.

For more information, see https://docs.nvidia.com/nemo/microservices/latest/pysdk/index.html#accessing-raw-response-data-e-g-headers

property with_streaming_response: ConfigsResourceWithStreamingResponse#

An alternative to .with_raw_response that doesn’t eagerly read the response body.

For more information, see https://docs.nvidia.com/nemo/microservices/latest/pysdk/index.html#with_streaming_response

create(
*,
max_seq_length: int,
training_options: Iterable[CustomizationTrainingOptionParam],
chat_prompt_template: str | NotGiven = NOT_GIVEN,
custom_fields: Dict[str, str] | NotGiven = NOT_GIVEN,
dataset_schemas: Iterable[object] | NotGiven = NOT_GIVEN,
description: str | NotGiven = NOT_GIVEN,
name: str | NotGiven = NOT_GIVEN,
namespace: str | NotGiven = NOT_GIVEN,
ownership: Ownership | NotGiven = NOT_GIVEN,
pod_spec: TrainingPodSpecParam | NotGiven = NOT_GIVEN,
project: str | NotGiven = NOT_GIVEN,
prompt_template: str | NotGiven = NOT_GIVEN,
target: config_create_params.Target | NotGiven = NOT_GIVEN,
training_precision: ModelPrecision | NotGiven = NOT_GIVEN,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) CustomizationConfig#

Create a new customization config.

Parameters:
  • max_seq_length – The largest context used for training. Datasets are truncated based on the maximum sequence length.

  • training_options – Resource configuration for each training option for the model.

  • chat_prompt_template – Chat Prompt Template to apply to the model to make it compatible with chat datasets

  • custom_fields – A set of custom fields that the user can define and use for various purposes.

  • dataset_schemas – Descriptions of the expected formats of the datasets uploaded.

  • description – The description of the entity.

  • name – The name of the entity. Must be unique inside the namespace. If not specified, it will be the same as the automatically generated id.

  • namespace – The namespace of the entity. This can be missing for namespace entities or in deployments that don’t use namespaces.

  • ownership

    Information about ownership of an entity.

    If the entity is a namespace, the access_policies will typically apply to all entities inside the namespace.

  • pod_spec – Additional parameters to ensure these training jobs get run on the appropriate hardware.

  • project – The URN of the project associated with this entity.

  • prompt_template – Prompt template used to extract keys from the dataset. E.g. prompt_template=’{input} {output}’, and sample looks like ‘{“input”: “Q: 2x2 A:”, “output”: “4”}’ then the model sees ‘Q: 2x2 A: 4’

  • target – The target to perform the customization on

  • training_precision

    Type of model precision.

    ## Values

    • ”int8” - 8-bit integer precision

    • ”bf16” - Brain floating point precision

    • ”fp16” - 16-bit floating point precision

    • ”fp32” - 32-bit floating point precision

    • ”fp8-mixed” - Mixed 8-bit floating point precision available on Hopper and later architectures.

    • ”bf16-mixed” - Mixed Brain floating point precision

  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

retrieve(
config_name: str,
*,
namespace: str,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) CustomizationConfig#

Get Customization Config

Parameters:
  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

update(
config_name: str,
*,
namespace: str,
add_training_options: Iterable[CustomizationTrainingOptionParam] | NotGiven = NOT_GIVEN,
chat_prompt_template: str | NotGiven = NOT_GIVEN,
custom_fields: Dict[str, str] | NotGiven = NOT_GIVEN,
dataset_schemas: Iterable[object] | NotGiven = NOT_GIVEN,
description: str | NotGiven = NOT_GIVEN,
max_seq_length: int | NotGiven = NOT_GIVEN,
ownership: Ownership | NotGiven = NOT_GIVEN,
pod_spec: TrainingPodSpecParam | NotGiven = NOT_GIVEN,
project: str | NotGiven = NOT_GIVEN,
prompt_template: str | NotGiven = NOT_GIVEN,
remove_training_options: Iterable[CustomizationTrainingOptionRemovalParam] | NotGiven = NOT_GIVEN,
training_options: Iterable[CustomizationTrainingOptionParam] | NotGiven = NOT_GIVEN,
training_precision: ModelPrecision | NotGiven = NOT_GIVEN,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) CustomizationConfig#

Update a customization configuration with partial data.

This endpoint supports partial updates with the following behavior:

Override Behavior (Complete Replacement):

  • Top-level fields (e.g., description) - values are completely replaced

  • pod_spec - each field in the pod_spec is replaced if provided. If a field is not provided, it is not removed.

  • dataset_schemas - entire dataset schemas are replaced if provided, no merging is done

Training Options Management: Training options are identified by the combination of training_type and finetuning_type. When updating training options:

  1. If training_options is provided, matching existing options are updated field-by-field

  2. If add_training_options is provided, new options are appended to the list

  3. If remove_training_options is provided, matching options are deleted

  4. All other existing training options remain unchanged

Parameters:
  • add_training_options – List of training options to add in the existing training options for the config.

  • chat_prompt_template – Chat Prompt Template to apply to the model to make it compatible with chat datasets

  • custom_fields – A set of custom fields that the user can define and use for various purposes.

  • dataset_schemas – Descriptions of the expected formats of the datasets uploaded.

  • description – The description of the entity.

  • max_seq_length – The largest context used for training. Datasets are truncated based on the maximum sequence length.

  • ownership

    Information about ownership of an entity.

    If the entity is a namespace, the access_policies will typically apply to all entities inside the namespace.

  • pod_spec – Additional parameters to ensure these training jobs get run on the appropriate hardware.

  • project – The URN of the project associated with this entity.

  • prompt_template – Prompt template used to extract keys from the dataset. E.g. prompt_template=’{input} {output}’, and sample looks like ‘{“input”: “Q: 2x2 A:”, “output”: “4”}’ then the model sees ‘Q: 2x2 A: 4’

  • remove_training_options – List of training options to remove from the existing training options for the config.

  • training_options – Resource configuration for each training option for the model.

  • training_precision

    Type of model precision.

    ## Values

    • ”int8” - 8-bit integer precision

    • ”bf16” - Brain floating point precision

    • ”fp16” - 16-bit floating point precision

    • ”fp32” - 32-bit floating point precision

    • ”fp8-mixed” - Mixed 8-bit floating point precision available on Hopper and later architectures.

    • ”bf16-mixed” - Mixed Brain floating point precision

  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

list(
*,
filter: CustomizationConfigFilterParam | NotGiven = NOT_GIVEN,
page: int | NotGiven = NOT_GIVEN,
page_size: int | NotGiven = NOT_GIVEN,
sort: CustomizationConfigSortField | NotGiven = NOT_GIVEN,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) SyncDefaultPagination[CustomizationConfig]#

List available customization configs.

Parameters:
  • filter – Filter customization configs on various criteria.

  • page – Page number.

  • page_size – Page size.

  • sort – The field to sort by. To sort in decreasing order, use - in front of the field name.

  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

delete(
config_name: str,
*,
namespace: str,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) object#

Delete Customization Config

Parameters:
  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

create_from_dict(data: dict[str, object]) object#
class nemo_microservices.resources.customization.AsyncConfigsResource(client: AsyncNeMoMicroservices)#

Bases: AsyncAPIResource

property with_raw_response: AsyncConfigsResourceWithRawResponse#

This property can be used as a prefix for any HTTP method call to return the raw response object instead of the parsed content.

For more information, see https://docs.nvidia.com/nemo/microservices/latest/pysdk/index.html#accessing-raw-response-data-e-g-headers

property with_streaming_response: AsyncConfigsResourceWithStreamingResponse#

An alternative to .with_raw_response that doesn’t eagerly read the response body.

For more information, see https://docs.nvidia.com/nemo/microservices/latest/pysdk/index.html#with_streaming_response

async create(
*,
max_seq_length: int,
training_options: Iterable[CustomizationTrainingOptionParam],
chat_prompt_template: str | NotGiven = NOT_GIVEN,
custom_fields: Dict[str, str] | NotGiven = NOT_GIVEN,
dataset_schemas: Iterable[object] | NotGiven = NOT_GIVEN,
description: str | NotGiven = NOT_GIVEN,
name: str | NotGiven = NOT_GIVEN,
namespace: str | NotGiven = NOT_GIVEN,
ownership: Ownership | NotGiven = NOT_GIVEN,
pod_spec: TrainingPodSpecParam | NotGiven = NOT_GIVEN,
project: str | NotGiven = NOT_GIVEN,
prompt_template: str | NotGiven = NOT_GIVEN,
target: config_create_params.Target | NotGiven = NOT_GIVEN,
training_precision: ModelPrecision | NotGiven = NOT_GIVEN,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) CustomizationConfig#

Create a new customization config.

Parameters:
  • max_seq_length – The largest context used for training. Datasets are truncated based on the maximum sequence length.

  • training_options – Resource configuration for each training option for the model.

  • chat_prompt_template – Chat Prompt Template to apply to the model to make it compatible with chat datasets

  • custom_fields – A set of custom fields that the user can define and use for various purposes.

  • dataset_schemas – Descriptions of the expected formats of the datasets uploaded.

  • description – The description of the entity.

  • name – The name of the entity. Must be unique inside the namespace. If not specified, it will be the same as the automatically generated id.

  • namespace – The namespace of the entity. This can be missing for namespace entities or in deployments that don’t use namespaces.

  • ownership

    Information about ownership of an entity.

    If the entity is a namespace, the access_policies will typically apply to all entities inside the namespace.

  • pod_spec – Additional parameters to ensure these training jobs get run on the appropriate hardware.

  • project – The URN of the project associated with this entity.

  • prompt_template – Prompt template used to extract keys from the dataset. E.g. prompt_template=’{input} {output}’, and sample looks like ‘{“input”: “Q: 2x2 A:”, “output”: “4”}’ then the model sees ‘Q: 2x2 A: 4’

  • target – The target to perform the customization on

  • training_precision

    Type of model precision.

    ## Values

    • ”int8” - 8-bit integer precision

    • ”bf16” - Brain floating point precision

    • ”fp16” - 16-bit floating point precision

    • ”fp32” - 32-bit floating point precision

    • ”fp8-mixed” - Mixed 8-bit floating point precision available on Hopper and later architectures.

    • ”bf16-mixed” - Mixed Brain floating point precision

  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

async retrieve(
config_name: str,
*,
namespace: str,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) CustomizationConfig#

Get Customization Config

Parameters:
  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

async update(
config_name: str,
*,
namespace: str,
add_training_options: Iterable[CustomizationTrainingOptionParam] | NotGiven = NOT_GIVEN,
chat_prompt_template: str | NotGiven = NOT_GIVEN,
custom_fields: Dict[str, str] | NotGiven = NOT_GIVEN,
dataset_schemas: Iterable[object] | NotGiven = NOT_GIVEN,
description: str | NotGiven = NOT_GIVEN,
max_seq_length: int | NotGiven = NOT_GIVEN,
ownership: Ownership | NotGiven = NOT_GIVEN,
pod_spec: TrainingPodSpecParam | NotGiven = NOT_GIVEN,
project: str | NotGiven = NOT_GIVEN,
prompt_template: str | NotGiven = NOT_GIVEN,
remove_training_options: Iterable[CustomizationTrainingOptionRemovalParam] | NotGiven = NOT_GIVEN,
training_options: Iterable[CustomizationTrainingOptionParam] | NotGiven = NOT_GIVEN,
training_precision: ModelPrecision | NotGiven = NOT_GIVEN,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) CustomizationConfig#

Update a customization configuration with partial data.

This endpoint supports partial updates with the following behavior:

Override Behavior (Complete Replacement):

  • Top-level fields (e.g., description) - values are completely replaced

  • pod_spec - each field in the pod_spec is replaced if provided. If a field is not provided, it is not removed.

  • dataset_schemas - entire dataset schemas are replaced if provided, no merging is done

Training Options Management: Training options are identified by the combination of training_type and finetuning_type. When updating training options:

  1. If training_options is provided, matching existing options are updated field-by-field

  2. If add_training_options is provided, new options are appended to the list

  3. If remove_training_options is provided, matching options are deleted

  4. All other existing training options remain unchanged

Parameters:
  • add_training_options – List of training options to add in the existing training options for the config.

  • chat_prompt_template – Chat Prompt Template to apply to the model to make it compatible with chat datasets

  • custom_fields – A set of custom fields that the user can define and use for various purposes.

  • dataset_schemas – Descriptions of the expected formats of the datasets uploaded.

  • description – The description of the entity.

  • max_seq_length – The largest context used for training. Datasets are truncated based on the maximum sequence length.

  • ownership

    Information about ownership of an entity.

    If the entity is a namespace, the access_policies will typically apply to all entities inside the namespace.

  • pod_spec – Additional parameters to ensure these training jobs get run on the appropriate hardware.

  • project – The URN of the project associated with this entity.

  • prompt_template – Prompt template used to extract keys from the dataset. E.g. prompt_template=’{input} {output}’, and sample looks like ‘{“input”: “Q: 2x2 A:”, “output”: “4”}’ then the model sees ‘Q: 2x2 A: 4’

  • remove_training_options – List of training options to remove from the existing training options for the config.

  • training_options – Resource configuration for each training option for the model.

  • training_precision

    Type of model precision.

    ## Values

    • ”int8” - 8-bit integer precision

    • ”bf16” - Brain floating point precision

    • ”fp16” - 16-bit floating point precision

    • ”fp32” - 32-bit floating point precision

    • ”fp8-mixed” - Mixed 8-bit floating point precision available on Hopper and later architectures.

    • ”bf16-mixed” - Mixed Brain floating point precision

  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

list(
*,
filter: CustomizationConfigFilterParam | NotGiven = NOT_GIVEN,
page: int | NotGiven = NOT_GIVEN,
page_size: int | NotGiven = NOT_GIVEN,
sort: CustomizationConfigSortField | NotGiven = NOT_GIVEN,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) AsyncPaginator[CustomizationConfig, AsyncDefaultPagination[CustomizationConfig]]#

List available customization configs.

Parameters:
  • filter – Filter customization configs on various criteria.

  • page – Page number.

  • page_size – Page size.

  • sort – The field to sort by. To sort in decreasing order, use - in front of the field name.

  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

async delete(
config_name: str,
*,
namespace: str,
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) object#

Delete Customization Config

Parameters:
  • extra_headers – Send extra headers

  • extra_query – Add additional query parameters to the request

  • extra_body – Add additional JSON properties to the request

  • timeout – Override the client-level default timeout for this request, in seconds

create_from_dict(
data: dict[str, object],
) object#