Source code for nemo_rl.data.eval_datasets
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from nemo_rl.data.eval_datasets.aime2024 import AIME2024Dataset
from nemo_rl.data.eval_datasets.gpqa import GPQADataset
from nemo_rl.data.eval_datasets.local_math_dataset import LocalMathDataset
from nemo_rl.data.eval_datasets.math import MathDataset
from nemo_rl.data.eval_datasets.mmlu import MMLUDataset
from nemo_rl.data.eval_datasets.mmlu_pro import MMLUProDataset
[docs]
def load_eval_dataset(data_config):
"""Loads evaluation dataset."""
dataset_name = data_config["dataset_name"]
if dataset_name.startswith("mmlu") and dataset_name != "mmlu_pro":
if dataset_name == "mmlu":
base_dataset = MMLUDataset(
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
else:
language = dataset_name.split("_")[1]
base_dataset = MMLUDataset(
language=language,
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
elif dataset_name == "aime2024":
base_dataset = AIME2024Dataset(
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
elif dataset_name == "gpqa":
base_dataset = GPQADataset(
variant="main",
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
elif dataset_name == "gpqa_diamond":
base_dataset = GPQADataset(
variant="diamond",
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
elif dataset_name == "mmlu_pro":
base_dataset = MMLUProDataset(
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
elif dataset_name == "math":
base_dataset = MathDataset(
variant="math_test",
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
elif dataset_name == "math500":
base_dataset = MathDataset(
variant="math_500_test",
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
elif dataset_name == "local":
base_dataset = LocalMathDataset(
name=dataset_name,
data_paths=data_config["data_paths"],
problem_key=data_config["problem_key"],
solution_key=data_config["solution_key"],
file_format=data_config["file_format"],
split=data_config["split"],
prompt_file=data_config["prompt_file"],
system_prompt_file=data_config["system_prompt_file"],
)
else:
raise ValueError(f"Unknown dataset {dataset_name}.")
return base_dataset
__all__ = [
"AIME2024Dataset",
"GPQADataset",
"LocalMathDataset",
"MathDataset",
"MMLUDataset",
"MMLUProDataset",
]