Source code for nemo_rl.data.eval_datasets

# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from nemo_rl.data.eval_datasets.aime2024 import AIME2024Dataset
from nemo_rl.data.eval_datasets.gpqa import GPQADataset
from nemo_rl.data.eval_datasets.local_math_dataset import LocalMathDataset
from nemo_rl.data.eval_datasets.math import MathDataset
from nemo_rl.data.eval_datasets.mmlu import MMLUDataset
from nemo_rl.data.eval_datasets.mmlu_pro import MMLUProDataset


[docs] def load_eval_dataset(data_config): """Loads evaluation dataset.""" dataset_name = data_config["dataset_name"] if dataset_name.startswith("mmlu") and dataset_name != "mmlu_pro": if dataset_name == "mmlu": base_dataset = MMLUDataset( prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) else: language = dataset_name.split("_")[1] base_dataset = MMLUDataset( language=language, prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) elif dataset_name == "aime2024": base_dataset = AIME2024Dataset( prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) elif dataset_name == "gpqa": base_dataset = GPQADataset( variant="main", prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) elif dataset_name == "gpqa_diamond": base_dataset = GPQADataset( variant="diamond", prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) elif dataset_name == "mmlu_pro": base_dataset = MMLUProDataset( prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) elif dataset_name == "math": base_dataset = MathDataset( variant="math_test", prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) elif dataset_name == "math500": base_dataset = MathDataset( variant="math_500_test", prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) elif dataset_name == "local": base_dataset = LocalMathDataset( name=dataset_name, data_paths=data_config["data_paths"], problem_key=data_config["problem_key"], solution_key=data_config["solution_key"], file_format=data_config["file_format"], split=data_config["split"], prompt_file=data_config["prompt_file"], system_prompt_file=data_config["system_prompt_file"], ) else: raise ValueError(f"Unknown dataset {dataset_name}.") return base_dataset
__all__ = [ "AIME2024Dataset", "GPQADataset", "LocalMathDataset", "MathDataset", "MMLUDataset", "MMLUProDataset", ]