Source code for nemo_rl.data.hf_datasets.oai_format_dataset
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
from datasets import load_dataset
from nemo_rl.data.interfaces import TaskDataSpec
[docs]
class OpenAIFormatDataset:
"""This class is used to load an SFT dataset in the OpenAI format.
The dataset should be in the following format:
{
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "What is the capital of France?"},
{"role": "assistant", "content": "The capital of France is Paris."}
]
}
system_key and system_prompt are optional. If provided, it will be added to the
beginning of the dataset.
chat_key should be the key of the messages list. Multi-turn conversations are
supported.
The last message in the conversation must be from the assistant.
"""
def __init__(
self,
train_ds_path: str,
val_ds_path: str,
chat_key: str = "messages",
system_key: str | None = None,
system_prompt: str | None = None,
):
self.chat_key = chat_key
self.system_key = system_key
self.system_prompt = system_prompt
train_original_dataset = load_dataset("json", data_files=train_ds_path)["train"]
val_original_dataset = load_dataset("json", data_files=val_ds_path)["train"]
formatted_train_dataset = train_original_dataset.map(self.add_messages_key)
formatted_val_dataset = val_original_dataset.map(self.add_messages_key)
self.formatted_ds = {
"train": formatted_train_dataset,
"validation": formatted_val_dataset,
}
self.task_spec = TaskDataSpec(
"json_dataset",
)
[docs]
def add_messages_key(
self,
example: dict[str, Any],
) -> dict[str, list[dict[str, Any]]]:
messages = [message for message in example[self.chat_key]]
if self.system_key is not None and self.system_key in example:
messages = [
{"role": "system", "content": example[self.system_key]}
] + messages
elif self.system_prompt:
messages = [{"role": "system", "content": self.system_prompt}] + messages
assert messages[-1]["role"] == "assistant"
return {"messages": messages}