Source code for nemo_rl.models.huggingface.common

# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from enum import Enum, auto

from transformers import AutoConfig


[docs] class ModelFlag(Enum): """Enum that defines special flags for model-specific behaviors. This enum provides a way to identify models that require special handling or configuration in different parts of the NeMo RL codebase. Flags: SKIP_DTENSOR_TIED_WEIGHTS_CHECK: Models that should skip the tied weights check for the DTensor Policy even without setting the NRL_SKIP_TIED_WEIGHT_CHECK flag. VLLM_LOAD_FORMAT_AUTO: Models that should use the "auto" load format when initializing VLLM. Each flag has a `matches` method that determines if the flag applies to a given model_name. """ SKIP_DTENSOR_TIED_WEIGHTS_CHECK = auto() VLLM_LOAD_FORMAT_AUTO = auto()
[docs] def matches(self, model_name: str) -> bool: match self: case ModelFlag.SKIP_DTENSOR_TIED_WEIGHTS_CHECK: return is_gemma3_model(model_name) case ModelFlag.VLLM_LOAD_FORMAT_AUTO: return is_gemma3_model(model_name) case _: raise ValueError(f"Unknown ModelFlag: {self}")
[docs] def is_gemma3_model(model_name: str) -> bool: hf_config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) return hasattr(hf_config, "model_type") and ( hf_config.model_type == "gemma3" or hf_config.model_type == "gemma3_text" )