Support Matrix for NeMo Retriever Text Embedding NIM#
This documentation describes the software and hardware that NeMo Retriever Text Embedding NIM supports.
CPU#
Text Embedding NIM requires the following:
x86 processor with at least 8 cores. For a list of supported systems, refer to NVIDIA Certified Systems Catalog.
Models#
NeMo Retriever Text Embedding NIM supports the following models.
Model Name |
Model ID |
Max Tokens |
Publisher |
Parameters |
Embedding |
Dynamic Embeddings |
Model Card |
---|---|---|---|---|---|---|---|
NeMo Retriever Llama Vision Embed |
nvidia/llama-3.2-nemoretriever-1b-vlm-embed-v1 |
4096 |
NVIDIA |
1678 |
2048 |
yes |
— |
bge-large-zh-v1.5 |
baai/bge-large-zh-v1.5 |
512 |
BAAI |
325 |
1024 |
no |
|
bge-m3 |
baai/bge-m3 |
8192 |
BAAI |
560 |
1024 |
no |
|
Llama-3.2-NV-EmbedQA-1B-v2 |
nvidia/llama-3.2-nv-embedqa-1b-v2 |
8192 |
NVIDIA |
1236 |
2048 |
yes |
|
NV-EmbedQA-E5-v5 |
nvidia/nv-embedqa-e5-v5 |
512 |
NVIDIA |
335 |
1024 |
no |
|
NV-EmbedQA-Mistral7B-v2 |
nvidia/nv-embedqa-mistral-7b-v2 |
512 |
NVIDIA |
7110 |
4096 |
no |
|
Snowflake’s Arctic-embed-l |
snowflake/arctic-embed-l |
512 |
Snowflake |
335 |
1024 |
no |
Optimized vs Non Optimized Models#
The following models are optimized using TRT and are available as pre-built, optimized engines on NGC. These optimized models are GPU specific and require a minimum GPU memory value as specified in the Optimized configuration sections of each model.
NVIDIA also provides generic model profiles that operate with any NVIDIA GPU (or set of GPUs) with sufficient memory capacity. These generic profiles are known as non-optimized configuration. On systems where there are no compatible optimized profiles, generic profiles are chosen automatically. Optimized profiles are preferred over generic profiles when available, but you can choose to deploy a generic profile on any system by following the steps in the Overriding Profile Selection section.
Supported Hardware#
Note
Currently, GPU clusters with GPUs in Multi-instance GPU mode (MIG) are not supported.
NeMo Retriever Llama Vision Embed (llama-3.2-nemoretriever-1b-vlm-embed-v1)#
Optimized configuration#
Currently, there is no support for optimized configurations.
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
Min: 4.4 GiB, Max: 21 GiB |
FP16 |
3.2GiB |
bge-large-zh-v1.5#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
H20 |
96 |
FP16 |
L20 |
48 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values in the following table are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
10 |
FP16 |
8.1 |
bge-m3#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
80 |
FP16 |
H100 HBM3 |
80 |
FP16 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L20 |
48 |
FP16 |
H20 |
96 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
33 |
FP16 |
8.8 |
Llama-3.2-NV-EmbedQA-1B-v2#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
40 & 80 |
FP16 |
H100 HBM3 |
80 |
FP16 & FP8 |
H100 NVL |
80 |
FP16 & FP8 |
L40s |
48 |
FP16 & FP8 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 & FP8 |
B200 |
180 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
Max Tokens |
---|---|---|---|---|
Any single NVIDIA GPU that has sufficient memory, or multiple homogenous NVIDIA GPUs that have sufficient memory in total. |
3.6 |
FP16 |
9 |
4096 |
If you run this model on RTX 40xx or later, you need a minimum of 8GB of VRAM.
Warning
The maximum token length of the non-optimized configuration is smaller (4096) than the other profiles (8192).
NV-EmbedQA-E5-v5#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
40 & 80 |
FP16 |
H100 HBM3 |
80 |
FP16 |
H100 NVL |
80 |
FP16 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
B200 |
180 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
2 |
FP16 |
8.5 |
NV-EmbedQA-Mistral7B-v2#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
80 |
FP16 |
H100 HBM3 |
80 |
FP8 |
H100 HBM3 |
80 |
FP16 |
L40s |
48 |
FP8 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
16 |
FP16 |
30 |
Snowflake’s Arctic-embed-l#
Optimized configuration#
GPU |
GPU Memory (GB) |
Precision |
---|---|---|
A100 SXM4 |
80 |
FP16 |
H100 HBM3 |
80 |
FP16 |
L40s |
48 |
FP16 |
A10G |
24 |
FP16 |
L4 |
24 |
FP16 |
Non-optimized configuration#
The GPU Memory and Disk Space values are in GB; Disk Space is for both the container and the model.
GPUs |
GPU Memory |
Precision |
Disk Space |
---|---|---|---|
Any NVIDIA GPU with sufficient GPU memory or on multiple, homogenous NVIDIA GPUs with sufficient aggregate memory |
2 |
FP16 |
17 |
Memory Footprint#
You can control the NIM’s memory footprint by controlling the maximum allowed batch size and sequence length. For more information, refer to Memory Footprint.
The following table provides the set of valid configurations and the associated approximate memory footprints for the model.
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
3.14 |
8 |
8192 |
7.94 |
16 |
8192 |
13.56 |
30 |
1024 |
4.48 |
30 |
2048 |
7.12 |
30 |
4096 |
11.92 |
30 |
8192 |
23.41 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
3.14 |
8 |
8192 |
7.94 |
16 |
8192 |
13.56 |
30 |
1024 |
4.48 |
30 |
2048 |
7.12 |
30 |
4096 |
11.92 |
30 |
8192 |
23.41 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
3.02 |
8 |
8192 |
7.94 |
16 |
1024 |
3.47 |
16 |
2048 |
4.88 |
16 |
4096 |
7.44 |
16 |
8192 |
13.56 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
3.02 |
8 |
8192 |
7.94 |
16 |
8192 |
13.56 |
30 |
1024 |
4.48 |
30 |
2048 |
7.12 |
30 |
4096 |
11.92 |
30 |
8192 |
23.41 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
1.84 |
8 |
8192 |
4.94 |
16 |
8192 |
8.47 |
30 |
1024 |
2.6 |
30 |
2048 |
4.02 |
30 |
4096 |
7.09 |
30 |
8192 |
14.65 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
3.02 |
8 |
8192 |
7.94 |
16 |
8192 |
13.56 |
30 |
1024 |
4.48 |
30 |
2048 |
7.12 |
30 |
4096 |
11.92 |
30 |
8192 |
23.41 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
1.84 |
8 |
8192 |
4.94 |
16 |
8192 |
8.47 |
30 |
1024 |
2.6 |
30 |
2048 |
4.02 |
30 |
4096 |
7.09 |
30 |
8192 |
14.65 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
3.02 |
8 |
8192 |
7.94 |
16 |
1024 |
3.47 |
16 |
2048 |
4.88 |
16 |
4096 |
7.44 |
16 |
8192 |
13.56 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
2.08 |
8 |
8192 |
6.94 |
16 |
1024 |
2.54 |
16 |
2048 |
3.8 |
16 |
4096 |
6.44 |
16 |
8192 |
12.47 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
3.02 |
8 |
8192 |
7.94 |
16 |
8192 |
13.56 |
30 |
1024 |
4.48 |
30 |
2048 |
7.12 |
30 |
4096 |
11.92 |
30 |
8192 |
23.41 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
8192 |
1.96 |
8 |
8192 |
5.94 |
16 |
8192 |
10.47 |
30 |
1024 |
3.06 |
30 |
2048 |
4.95 |
30 |
4096 |
8.97 |
30 |
8192 |
18.4 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
512 |
0.63 |
64 |
512 |
1.03 |
128 |
512 |
1.44 |
192 |
512 |
1.84 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
512 |
0.63 |
64 |
512 |
1.03 |
128 |
512 |
1.44 |
384 |
512 |
3.06 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
512 |
0.79 |
16 |
512 |
0.88 |
32 |
512 |
0.98 |
64 |
512 |
1.19 |
80 |
512 |
1.29 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
512 |
0.82 |
64 |
512 |
1.22 |
128 |
512 |
1.63 |
384 |
512 |
3.25 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
512 |
0.82 |
64 |
512 |
1.22 |
128 |
512 |
1.63 |
384 |
512 |
3.25 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
512 |
0.69 |
16 |
512 |
0.79 |
32 |
512 |
0.89 |
64 |
512 |
1.09 |
80 |
512 |
1.2 |
Max Batch Size |
Max Sequence Length |
Approximate GPU Memory Size (GB) |
---|---|---|
1 |
512 |
0.82 |
64 |
512 |
1.28 |
128 |
512 |
1.75 |
256 |
512 |
2.69 |
Software#
NVIDIA Driver#
Release 1.7.0+ uses NVIDIA Optimized Frameworks 25.01. For NVIDIA driver support, refer to the Frameworks Support Matrix.
If issues arise when you start the NIM containers, run the following code to ensure that the latest NVIDIA drivers are installed.
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
sudo apt-get update
sudo apt-get install -y nvidia-container-toolkit
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker
NVIDIA Container Toolkit#
Your Docker environment must support NVIDIA GPUs. For more information, refer to NVIDIA Container Toolkit.