Deploy NVIDIA RAG Blueprint on Kubernetes with Helm from the repository#

Use the following documentation to deploy the NVIDIA RAG Blueprint by using the helm chart from the repository.

The following are the core services that you install:

  • RAG server

  • Ingestor server

  • NV-Ingest

Prerequisites#

Verify that you meet the prerequisites specified in prerequisites.

Deploy the RAG Helm chart from the repository#

If you are working directly with the source Helm chart, and you want to customize components individually, use the following procedure.

  1. Change directory to deploy/helm/ by running the following code.

    cd deploy/helm/
    
  2. Create a namespace for the deployment by running the following code.

    kubectl create namespace rag
    
  3. Configure Helm repo additions by editing and then running the following code.

    helm repo add nvidia-nim https://helm.ngc.nvidia.com/nim/nvidia/ --username='$oauthtoken' --password=$NGC_API_KEY
    helm repo add nim https://helm.ngc.nvidia.com/nim/ --username='$oauthtoken' --password=$NGC_API_KEY
    helm repo add nemo-microservices https://helm.ngc.nvidia.com/nvidia/nemo-microservices --username='$oauthtoken' --password=$NGC_API_KEY
    helm repo add baidu-nim https://helm.ngc.nvidia.com/nim/baidu --username='$oauthtoken' --password=$NGC_API_KEY
    helm repo add bitnami https://charts.bitnami.com/bitnami
    helm repo add otel https://open-telemetry.github.io/opentelemetry-helm-charts
    helm repo add zipkin https://zipkin.io/zipkin-helm
    helm repo add prometheus https://prometheus-community.github.io/helm-charts
    
  4. Update Helm chart dependencies by running the following code.

    helm dependency update nvidia-blueprint-rag
    
  5. Install the chart by running the following code.

    helm upgrade --install rag -n rag nvidia-blueprint-rag/ \
    --set imagePullSecret.password=$NGC_API_KEY \
    --set ngcApiSecret.password=$NGC_API_KEY
    

    Note

    Refer to NIM Model Profile Configuration to set NIM LLM profile according to the GPU type and count. Set the profile explicitly to avoid any errors with NIM LLM pod deployment.

  6. Follow the remaining instructions in Deploy on Kubernetes with Helm: