NVIDIA Modulus Sym (Latest Release)
Sym (Latest Release)

deeplearning/modulus/modulus-sym/_modules/modulus/sym/domain/constraint/discrete.html

Source code for modulus.sym.domain.constraint.discrete

# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

""" Continuous type constraints
"""

import logging
from typing import Dict, List, Union

import torch
from torch.nn.parallel import DistributedDataParallel
import numpy as np

from modulus.sym.domain.constraint import Constraint
from modulus.sym.graph import Graph
from modulus.sym.key import Key
from modulus.sym.node import Node
from modulus.sym.loss import Loss, PointwiseLossNorm
from modulus.sym.distributed import DistributedManager
from modulus.sym.utils.io.vtk import grid_to_vtk
from modulus.sym.dataset import Dataset, IterableDataset, DictGridDataset

logger = logging.getLogger(__name__)


[docs]class SupervisedGridConstraint(Constraint): """Data-driven grid field constraint Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. dataset: Union[Dataset, IterableDataset] dataset which supplies invar and outvar examples Must be a subclass of Dataset or IterableDataset loss : Loss, optional Modulus `Loss` function, by default PointwiseLossNorm() batch_size : int, optional Batch size used when running constraint, must be specified if Dataset used Not used if IterableDataset used shuffle : bool, optional Randomly shuffle examples in dataset every epoch, by default True Not used if IterableDataset used drop_last : bool, optional Drop last mini-batch if dataset not fully divisible but batch_size, by default False Not used if IterableDataset used num_workers : int, optional Number of dataloader workers, by default 0 """ def __init__( self, nodes: List[Node], dataset: Union[Dataset, IterableDataset], loss: Loss = PointwiseLossNorm(), batch_size: int = None, shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, ): super().__init__( nodes=nodes, dataset=dataset, loss=loss, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) def save_batch(self, filename): # sample batch invar, true_outvar, lambda_weighting = next(self.dataloader) invar0 = {key: value for key, value in invar.items()} invar = Constraint._set_device(invar, device=self.device, requires_grad=True) true_outvar = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device(lambda_weighting, device=self.device) # If using DDP, strip out collective stuff to prevent deadlocks # This only works either when one process alone calls in to save_batch # or when multiple processes independently save data if hasattr(self.model, "module"): modl = self.model.module else: modl = self.model # compute pred outvar pred_outvar = modl(invar) # rename values and save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + key: value for key, value in true_outvar.items()} named_pred_outvar = {"pred_" + key: value for key, value in pred_outvar.items()} save_var = { **{key: value for key, value in invar0.items()}, **named_true_outvar, **named_pred_outvar, } save_var = { key: value.cpu().detach().numpy() for key, value in save_var.items() } model_parallel_rank = ( self.manager.group_rank("model_parallel") if self.manager.distributed else 0 ) # Using - as delimiter here since vtk ignores anything after . grid_to_vtk(save_var, filename + f"-{model_parallel_rank}") def load_data(self): # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) self._input_vars = Constraint._set_device( invar, device=self.device, requires_grad=True ) self._target_vars = Constraint._set_device(true_outvar, device=self.device) self._lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) def load_data_static(self): if self._input_vars is None: # Default loading if vars not allocated self.load_data() else: # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) # Set grads to false here for inputs, static var has allocation already input_vars = Constraint._set_device( invar, device=self.device, requires_grad=False ) target_vars = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) for key in input_vars.keys(): self._input_vars[key].data.copy_(input_vars[key]) for key in target_vars.keys(): self._target_vars[key].copy_(target_vars[key]) for key in lambda_weighting.keys(): self._lambda_weighting[key].copy_(lambda_weighting[key]) def forward(self): # compute pred outvar self._output_vars = self.model(self._input_vars) def loss(self, step: int) -> Dict[str, torch.Tensor]: if self._output_vars is None: logger.warn("Calling loss without forward call") return {} losses = self._loss( self._input_vars, self._output_vars, self._target_vars, self._lambda_weighting, step, ) return losses

class _DeepONetConstraint(Constraint): def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], outvar: Dict[str, np.array], batch_size: int, lambda_weighting: Dict[str, np.array], loss: Loss, shuffle: bool, drop_last: bool, num_workers: int, ): # TODO: add support for other datasets (like SupervisedGridConstraint) # get dataset and dataloader self.dataset = DictGridDataset( invar=invar_branch, outvar=outvar, lambda_weighting=lambda_weighting ) # Get DDP manager self.manager = DistributedManager() self.device = self.manager.device if not drop_last and self.manager.cuda_graphs: logger.info("drop_last must be true when using cuda graphs") drop_last = True self.dataloader = iter( Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) ) # construct model from nodes self.model = Graph( nodes, Key.convert_list(invar_branch.keys()) + Key.convert_list(invar_trunk.keys()), Key.convert_list(outvar.keys()), ) self.model.to(self.device) if self.manager.distributed: # https://pytorch.org/docs/master/notes/cuda.html#id5 s = torch.cuda.Stream() s.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(s): self.model = DistributedDataParallel( self.model, device_ids=[self.manager.local_rank], output_device=self.device, broadcast_buffers=self.manager.broadcast_buffers, find_unused_parameters=self.manager.find_unused_parameters, process_group=self.manager.group( "data_parallel" ), # None by default ) torch.cuda.current_stream().wait_stream(s) self._input_names = Key.convert_list(self.dataset.invar_keys) self._output_names = Key.convert_list(self.dataset.outvar_keys) self._input_vars_branch = None self._target_vars = None self._lambda_weighting = None # put loss on device self._loss = loss.to(self.device) def save_batch(self, filename): # sample batch invar, true_outvar, lambda_weighting = next(self.dataloader) invar0 = {key: value for key, value in invar.items()} invar = Constraint._set_device(invar, device=self.device, requires_grad=True) true_outvar = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device(lambda_weighting, device=self.device) # If using DDP, strip out collective stuff to prevent deadlocks # This only works either when one process alone calls in to save_batch # or when multiple processes independently save data if hasattr(self.model, "module"): modl = self.model.module else: modl = self.model # compute pred outvar pred_outvar = modl({**invar, **self._input_vars_trunk}) # rename values and save batch to vtk file TODO clean this up after graph unroll stuff named_lambda_weighting = { "lambda_" + key: value for key, value in lambda_weighting.items() } named_true_outvar = {"true_" + key: value for key, value in true_outvar.items()} named_pred_outvar = {"pred_" + key: value for key, value in pred_outvar.items()} save_var = { **{key: value for key, value in invar0.items()}, **named_true_outvar, **named_pred_outvar, **named_lambda_weighting, } save_var = { key: value.cpu().detach().numpy() for key, value in save_var.items() } model_parallel_rank = ( self.manager.group_rank("model_parallel") if self.manager.distributed else 0 ) np.savez_compressed(filename + f".{model_parallel_rank}.npz", **save_var) def load_data(self): # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) self._input_vars_branch = Constraint._set_device( invar, device=self.device, requires_grad=True ) self._target_vars = Constraint._set_device(true_outvar, device=self.device) self._lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) def load_data_static(self): if self._input_vars_branch is None: # Default loading if vars not allocated self.load_data() else: # get train points from dataloader invar, true_outvar, lambda_weighting = next(self.dataloader) # Set grads to false here for inputs, static var has allocation already input_vars = Constraint._set_device( invar, device=self.device, requires_grad=False ) target_vars = Constraint._set_device(true_outvar, device=self.device) lambda_weighting = Constraint._set_device( lambda_weighting, device=self.device ) for key in input_vars.keys(): self._input_vars_branch[key].data.copy_(input_vars[key]) for key in target_vars.keys(): self._target_vars[key].copy_(target_vars[key]) for key in lambda_weighting.keys(): self._lambda_weighting[key].copy_(lambda_weighting[key]) def forward(self): # compute pred outvar self._output_vars = self.model( {**self._input_vars_branch, **self._input_vars_trunk} )

[docs]class DeepONetConstraint_Data(_DeepONetConstraint): def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], outvar: Dict[str, np.array], batch_size: int, lambda_weighting: Dict[str, np.array] = None, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, ): super().__init__( nodes=nodes, invar_branch=invar_branch, invar_trunk=invar_trunk, outvar=outvar, batch_size=batch_size, lambda_weighting=lambda_weighting, loss=loss, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) self._input_vars_trunk = Constraint._set_device( invar_trunk, device=self.device, requires_grad=True ) def loss(self, step: int): # compute loss losses = self._loss( self._input_vars_trunk, self._output_vars, self._target_vars, self._lambda_weighting, step, ) return losses
[docs]class DeepONetConstraint_Physics(_DeepONetConstraint): def __init__( self, nodes: List[Node], invar_branch: Dict[str, np.array], invar_trunk: Dict[str, np.array], outvar: Dict[str, np.array], batch_size: int, lambda_weighting: Dict[str, np.array] = None, loss: Loss = PointwiseLossNorm(), shuffle: bool = True, drop_last: bool = True, num_workers: int = 0, tile_trunk_input: bool = True, ): super().__init__( nodes=nodes, invar_branch=invar_branch, invar_trunk=invar_trunk, outvar=outvar, batch_size=batch_size, lambda_weighting=lambda_weighting, loss=loss, shuffle=shuffle, drop_last=drop_last, num_workers=num_workers, ) if tile_trunk_input: for k, v in invar_trunk.items(): invar_trunk[k] = np.tile(v, (batch_size, 1)) self._input_vars_trunk = Constraint._set_device( invar_trunk, device=self.device, requires_grad=True ) def loss(self, step: int): target_vars = { k: torch.reshape(v, (-1, 1)) for k, v in self._target_vars.items() } lambda_weighting = { k: torch.reshape(v, (-1, 1)) for k, v in self._lambda_weighting.items() } # compute loss losses = self._loss( self._input_vars_trunk, self._output_vars, target_vars, lambda_weighting, step, ) return losses
© Copyright 2023, NVIDIA Modulus Team. Last updated on Sep 24, 2024.