Modulus Sym Equations and Utils
Advection diffusion equation Reference: https://en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
- class modulus.sym.eq.pdes.advection_diffusion.AdvectionDiffusion(T='T', D='D', Q=0, rho='rho', dim=3, time=False, mixed_form=False)[source]
Bases:
PDE
Advection diffusion equation
- Parameters
T (str) – The dependent variable.
D (float, Sympy Symbol/Expr, str) – Diffusivity. If D is a str then it is converted to Sympy Function of form ‘D(x,y,z,t)’. If ‘D’ is a Sympy Symbol or Expression then this is substituted into the equation.
Q (float, Sympy Symbol/Expr, str) – The source term. If Q is a str then it is converted to Sympy Function of form ‘Q(x,y,z,t)’. If ‘Q’ is a Sympy Symbol or Expression then this is substituted into the equation. Default is 0.
rho (float, Sympy Symbol/Expr, str) – The density. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressible Navier Stokes.
dim (int) – Dimension of the diffusion equation (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is False.
mixed_form (bool) – If True, use the mixed formulation of the wave equation.
Examples
>>> ad = AdvectionDiffusion(D=0.1, rho=1.) >>> ad.pprint() advection_diffusion: u*T__x + v*T__y + w*T__z - 0.1*T__x__x - 0.1*T__y__y - 0.1*T__z__z >>> ad = AdvectionDiffusion(D='D', rho=1, dim=2, time=True) >>> ad.pprint() advection_diffusion: -D*T__x__x - D*T__y__y + u*T__x + v*T__y - D__x*T__x - D__y*T__y + T__t
Basic equations
- class modulus.sym.eq.pdes.basic.Curl(vector, curl_name=['u', 'v', 'w'])[source]
Bases:
PDE
del cross vector operator
- Parameters
vector (tuple of 3 Sympy Exprs, floats, ints or strings) – This will be the vector to take the curl of.
curl_name (tuple of 3 strings) – These will be the output names of the curl operations.
Examples
>>> c = Curl((0,0,'phi'), ('u','v','w')) >>> c.pprint() u: phi__y v: -phi__x w: 0
- class modulus.sym.eq.pdes.basic.GradNormal(T, dim=3, time=True)[source]
Bases:
PDE
Implementation of the gradient boundary condition
- Parameters
T (str) – The dependent variable.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
Examples
>>> gn = ns = GradNormal(T='T') >>> gn.pprint() normal_gradient_T: normal_x*T__x + normal_y*T__y + normal_z*T__z
- class modulus.sym.eq.pdes.basic.NormalDotVec(vec=['u', 'v', 'w'])[source]
Bases:
PDE
Normal dot velocity
- Parameters
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
Diffusion equation
- class modulus.sym.eq.pdes.diffusion.Diffusion(T='T', D='D', Q=0, dim=3, time=True, mixed_form=False)[source]
Bases:
PDE
Diffusion equation
- Parameters
T (str) – The dependent variable.
D (float, Sympy Symbol/Expr, str) – Diffusivity. If D is a str then it is converted to Sympy Function of form ‘D(x,y,z,t)’. If ‘D’ is a Sympy Symbol or Expression then this is substituted into the equation.
Q (float, Sympy Symbol/Expr, str) – The source term. If Q is a str then it is converted to Sympy Function of form ‘Q(x,y,z,t)’. If ‘Q’ is a Sympy Symbol or Expression then this is substituted into the equation. Default is 0.
dim (int) – Dimension of the diffusion equation (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
mixed_form (bool) – If True, use the mixed formulation of the diffusion equations.
Examples
>>> diff = Diffusion(D=0.1, Q=1, dim=2) >>> diff.pprint() diffusion_T: T__t - 0.1*T__x__x - 0.1*T__y__y - 1 >>> diff = Diffusion(T='u', D='D', Q='Q', dim=3, time=False) >>> diff.pprint() diffusion_u: -D*u__x__x - D*u__y__y - D*u__z__z - Q - D__x*u__x - D__y*u__y - D__z*u__z
- class modulus.sym.eq.pdes.diffusion.DiffusionInterface(T_1, T_2, D_1, D_2, dim=3, time=True)[source]
Bases:
PDE
Matches the boundary conditions at an interface
- Parameters
T_1 (str) – Dependent variables to match the boundary conditions at the interface.
T_2 (str) – Dependent variables to match the boundary conditions at the interface.
D_1 (float) – Diffusivity at the interface.
D_2 (float) – Diffusivity at the interface.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
Example
>>> diff = DiffusionInterface('theta_s', 'theta_f', 0.1, 0.05, dim=2) >>> diff.pprint() diffusion_interface_dirichlet_theta_s_theta_f: -theta_f + theta_s diffusion_interface_neumann_theta_s_theta_f: -0.05*normal_x*theta_f__x + 0.1*normal_x*theta_s__x - 0.05*normal_y*theta_f__y + 0.1*normal_y*theta_s__y
Maxwell’s equation
- class modulus.sym.eq.pdes.electromagnetic.MaxwellFreqReal(ux='ux', uy='uy', uz='uz', k=1.0, mixed_form=False)[source]
Bases:
PDE
Frequency domain Maxwell’s equation
- Parameters
ux (str) – Ex
uy (str) – Ey
uz (str) – Ez
k (float, Sympy Symbol/Expr, str) – Wave number. If k is a str then it is converted to Sympy Function of form ‘k(x,y,z,t)’. If ‘k’ is a Sympy Symbol or Expression then this is substituted into the equation.
mixed_form (bool) – If True, use the mixed formulation of the diffusion equations.
- class modulus.sym.eq.pdes.electromagnetic.PEC(ux='ux', uy='uy', uz='uz', dim=3)[source]
Bases:
PDE
Perfect Electric Conduct BC for
- Parameters
ux (str) – Ex
uy (str) – Ey
uz (str) – Ez
dim (int) – Dimension of the equations (2, or 3). Default is 3.
- class modulus.sym.eq.pdes.electromagnetic.SommerfeldBC(ux='ux', uy='uy', uz='uz')[source]
Bases:
PDE
Frequency domain ABC, Sommerfeld radiation condition Only for real part Equation: ‘n x _curl(E) = 0’
- Parameters
ux (str) – Ex
uy (str) – Ey
uz (str) – Ez
Equations related to linear elasticity
- class modulus.sym.eq.pdes.linear_elasticity.LinearElasticity(E=None, nu=None, lambda_=None, mu=None, rho=1, dim=3, time=False)[source]
Bases:
PDE
Linear elasticity equations. Use either (E, nu) or (lambda_, mu) to define the material properties.
- Parameters
E (float, Sympy Symbol/Expr, str) – The Young’s modulus
nu (float, Sympy Symbol/Expr, str) – The Poisson’s ratio
lambda (float, Sympy Symbol/Expr, str) – Lamé’s first parameter
mu (float, Sympy Symbol/Expr, str) – Lamé’s second parameter (shear modulus)
rho (float, Sympy Symbol/Expr, str) – Mass density.
dim (int) – Dimension of the linear elasticity (2 or 3). Default is 3.
Example
>>> elasticity_equations = LinearElasticity(E=10, nu=0.3, dim=2) >>> elasticity_equations.pprint() navier_x: -13.4615384615385*u__x__x - 3.84615384615385*u__y__y - 9.61538461538461*v__x__y navier_y: -3.84615384615385*v__x__x - 13.4615384615385*v__y__y - 9.61538461538461*u__x__y stress_disp_xx: -sigma_xx + 13.4615384615385*u__x + 5.76923076923077*v__y stress_disp_yy: -sigma_yy + 5.76923076923077*u__x + 13.4615384615385*v__y stress_disp_xy: -sigma_xy + 3.84615384615385*u__y + 3.84615384615385*v__x equilibrium_x: -sigma_xx__x - sigma_xy__y equilibrium_y: -sigma_xy__x - sigma_yy__y traction_x: normal_x*sigma_xx + normal_y*sigma_xy traction_y: normal_x*sigma_xy + normal_y*sigma_yy
- class modulus.sym.eq.pdes.linear_elasticity.LinearElasticityPlaneStress(E=None, nu=None, lambda_=None, mu=None, rho=1, time=False)[source]
Bases:
PDE
Linear elasticity plane stress equations. Use either (E, nu) or (lambda_, mu) to define the material properties.
- Parameters
E (float, Sympy Symbol/Expr, str) – The Young’s modulus
nu (float, Sympy Symbol/Expr, str) – The Poisson’s ratio
lambda (float, Sympy Symbol/Expr, str) – Lamé’s first parameter.
mu (float, Sympy Symbol/Expr, str) – Lamé’s second parameter (shear modulus)
rho (float, Sympy Symbol/Expr, str) – Mass density.
Example
>>> plane_stress_equations = LinearElasticityPlaneStress(E=10, nu=0.3) >>> plane_stress_equations.pprint() stress_disp_xx: -sigma_xx + 10.989010989011*u__x + 3.2967032967033*v__y stress_disp_yy: -sigma_yy + 3.2967032967033*u__x + 10.989010989011*v__y stress_disp_xy: -sigma_xy + 3.84615384615385*u__y + 3.84615384615385*v__x equilibrium_x: -sigma_xx__x - sigma_xy__y equilibrium_y: -sigma_xy__x - sigma_yy__y traction_x: normal_x*sigma_xx + normal_y*sigma_xy traction_y: normal_x*sigma_xy + normal_y*sigma_yy
Equations related to Navier Stokes Equations
Bases:
PDE
Compressible Integral Continuity
- Parameters
rho (float, Sympy Symbol/Expr, str) – The density of the fluid. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressibility. Default is 1.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
Bases:
PDE
del cross vector operator
- Parameters
vector (tuple of 3 Sympy Exprs, floats, ints or strings) – This will be the vector to take the curl of.
curl_name (tuple of 3 strings) – These will be the output names of the curl operations.
Examples
>>> c = Curl((0,0,'phi'), ('u','v','w')) >>> c.pprint() u: phi__y v: -phi__x w: 0
Bases:
PDE
Flux Continuity for arbitrary variable. Includes advective and diffusive flux
- Parameters
T (str) – The dependent variable.
rho (float, Sympy Symbol/Expr, str) – The density of the fluid. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressibility. Default is 1.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
Bases:
PDE
Implementation of the gradient boundary condition
- Parameters
T (str) – The dependent variable.
dim (int) – Dimension of the equations (1, 2, or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
Examples
>>> gn = ns = GradNormal(T='T') >>> gn.pprint() normal_gradient_T: normal_x*T__x + normal_y*T__y + normal_z*T__z
Bases:
PDE
Compressible Navier Stokes equations Reference: https://turbmodels.larc.nasa.gov/implementrans.html
- Parameters
nu (float, Sympy Symbol/Expr, str) – The kinematic viscosity. If nu is a str then it is converted to Sympy Function of form nu(x,y,z,t). If nu is a Sympy Symbol or Expression then this is substituted into the equation. This allows for variable viscosity.
rho (float, Sympy Symbol/Expr, str) – The density of the fluid. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation to allow for compressible Navier Stokes. Default is 1.
dim (int) – Dimension of the Navier Stokes (2 or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
mixed_form (bool) – If True, use the mixed formulation of the Navier-Stokes equations.
Examples
>>> ns = NavierStokes(nu=0.01, rho=1, dim=2) >>> ns.pprint() continuity: u__x + v__y momentum_x: u*u__x + v*u__y + p__x + u__t - 0.01*u__x__x - 0.01*u__y__y momentum_y: u*v__x + v*v__y + p__y + v__t - 0.01*v__x__x - 0.01*v__y__y >>> ns = NavierStokes(nu='nu', rho=1, dim=2, time=False) >>> ns.pprint() continuity: u__x + v__y momentum_x: -nu*u__x__x - nu*u__y__y + u*u__x + v*u__y - 2*nu__x*u__x - nu__y*u__y - nu__y*v__x + p__x momentum_y: -nu*v__x__x - nu*v__y__y + u*v__x + v*v__y - nu__x*u__y - nu__x*v__x - 2*nu__y*v__y + p__y
Screened Poisson Distance Equation taken from, https://www.researchgate.net/publication/266149392_Dynamic_Distance-Based_Shape_Features_for_Gait_Recognition, Equation 6 in paper.
- class modulus.sym.eq.pdes.signed_distance_function.ScreenedPoissonDistance(distance='normal_distance', tau=0.1, dim=3)[source]
Bases:
PDE
Screened Poisson Distance
- Parameters
distance (str) – A user-defined variable for distance. Default is “normal_distance”.
tau (float) – A small, positive parameter. Default is 0.1.
dim (int) – Dimension of the Screened Poisson Distance (1, 2, or 3). Default is 3.
Example
>>> s = ScreenedPoissonDistance(tau=0.1, dim=2) >>> s.pprint() screened_poisson_normal_distance: -normal_distance__x**2 + 0.316227766016838*normal_distance__x__x - normal_distance__y**2 + 0.316227766016838*normal_distance__y__y + 1
Zero Equation Turbulence model References: https://www.eureka.im/954.html https://knowledge.autodesk.com/support/cfd/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/SimCFD-Learning/files/GUID-BBA4E008-8346-465B-9FD3-D193CF108AF0-htm.html
- class modulus.sym.eq.pdes.turbulence_zero_eq.ZeroEquation(nu, max_distance, rho=1, dim=3, time=True)[source]
Bases:
PDE
Zero Equation Turbulence model
- Parameters
nu (float) – The kinematic viscosity of the fluid.
max_distance (float) – The maximum wall distance in the flow field.
rho (float, Sympy Symbol/Expr, str) – The density. If rho is a str then it is converted to Sympy Function of form ‘rho(x,y,z,t)’. If ‘rho’ is a Sympy Symbol or Expression then this is substituted into the equation. Default is 1.
dim (int) – Dimension of the Zero Equation Turbulence model (2 or 3). Default is 3.
time (bool) – If time-dependent equations or not. Default is True.
Example
>>> zeroEq = ZeroEquation(nu=0.1, max_distance=2.0, dim=2) >>> kEp.pprint() nu: sqrt((u__y + v__x)**2 + 2*u__x**2 + 2*v__y**2) *Min(0.18, 0.419*normal_distance)**2 + 0.1
Wave equation Reference: https://en.wikipedia.org/wiki/Wave_equation
- class modulus.sym.eq.pdes.wave_equation.HelmholtzEquation(u, k, dim=3, mixed_form=False)[source]
Bases:
PDE
- class modulus.sym.eq.pdes.wave_equation.WaveEquation(u='u', c='c', dim=3, time=True, mixed_form=False)[source]
Bases:
PDE
Wave equation
- Parameters
u (str) – The dependent variable.
c (float, Sympy Symbol/Expr, str) – Wave speed coefficient. If c is a str then it is converted to Sympy Function of form ‘c(x,y,z,t)’. If ‘c’ is a Sympy Symbol or Expression then this is substituted into the equation.
dim (int) – Dimension of the wave equation (1, 2, or 3). Default is 2.
time (bool) – If time-dependent equations or not. Default is True.
mixed_form (bool) – If True, use the mixed formulation of the wave equation.
Examples
>>> we = WaveEquation(c=0.8, dim=3) >>> we.pprint() wave_equation: u__t__t - 0.64*u__x__x - 0.64*u__y__y - 0.64*u__z__z >>> we = WaveEquation(c='c', dim=2, time=False) >>> we.pprint() wave_equation: -c**2*u__x__x - c**2*u__y__y - 2*c*c__x*u__x - 2*c*c__y*u__y
- class modulus.sym.eq.phy_informer.PhysicsInformer(required_outputs: List[str], equations: PDE, grad_method: str, fd_dx: Union[float, List[float]] = 0.001, bounds: List[float] = [6.283185307179586, 6.283185307179586, 6.283185307179586], compute_connectivity: bool = True, device: Optional[str] = None)[source]
Bases:
object
A utility to compute the residual of a Partial Differential Equation (PDE). Given the equations and required_outputs, this utility constructs the computational graph, including computing of the derivatives to output the residuals.
This utility computes the spatial grads automatically. Currently the spatial grads are computed using “autodiff”, “meshless_finite_difference”, “finite_difference”, “spectral”, and “least_squares” methods. All the other gradients (such as gradients w.r.t. time) will have to be manually included in the input_dict to the forward call.
- Parameters
required_outputs (List[str]) – Required keys in the output dictionary. To find the available outputs of a PDE, you can use the .pprint() method.
equations (PDE) – Equation to use for computing the residual. The equation must be in the form of Modulus Sym’s PDE. For more details, refer: https://docs.nvidia.com/deeplearning/modulus/modulus-sym/user_guide/features/nodes.html#equations. Custom PDEs are also supported. For details refer: https://docs.nvidia.com/deeplearning/modulus/modulus-sym/user_guide/features/nodes.html#custom-pdes
grad_method (str) –
Gradient method to use. Currently below methods are supported, which can be selected based on the model output format:
autodiff: The spatial gradients are computed using automatic differentiation. Ideal for networks dealing with point-clouds and fully-differentiable networks. The .forward call requires input dict with the relevant variables in [N, 1] shape along with entry for “coordinates” in [N, m] shape where m is the dimensionality of the input (1/2/3 based on 1D, 2D and 3D). Note: the coordinates tensor must have requires_grad set to True and the model outputs need to be connected to the coordinates in the computational graph. meshless_finite_difference: The spatial gradients are computed using meshless finite difference. Ideal for use with point-clouds. For details refer: https://docs.nvidia.com/deeplearning/modulus/modulus-sym/user_guide/features/performance.html#meshless-finite-derivatives. The .forward call requires input dict with the relevant variables in [N, 1] shape along with the same variables executed at the stencil points. Stencil points are defined by the following convention:
”u>>x::1”: u(i+1, j) “u>>x::-1”: u(i-1, j) “u>>x::1&&y::1”: u(i+1, j+1) “u>>x::-1&&y::-1”: u(i-1, j-1) etc.
finite_difference: The spatial gradients are computed using finite difference assuming regular grid. Ideal for use with regular grids / images. The .forward call requires input dict with the relevant variables in [N, 1, H, W, D] for 3D, [N, 1, H, W] for 2D and [N, 1, H] for 1D. spectral: The spatial gradients are computed using FFTs. Note: this can lead to boundary artifacts for non-periodic signals. Ideal for use with regular grids / images. The .forward call requires input dict with the relevant variables in [N, 1, H, W, D] for 3D, [N, 1, H, W] for 2D and [N, 1, H] for 1D. least_squares: The spatial gradients are computed using Least Squares technique. Ideal for use with mesh based representations. All values are computed at the nodes. The .forward call requires input dict with the relevant variables in [N, 1] shape along with entry for “coordinates” in [N, m] shape where m is the dimensionality of the input (1/2/3 based on 1D, 2D and 3D), “node_ids”, “edges” and “connectivity_tensor”. The “node_ids” and “edges” can directly derived from the graph representation (for example for dgl graph, by running graph.nodes() and graph.edges()). For computing connectivity tensor, refer: modulus.sym.eq.spatial_grads.spatial_grads.compute_connectivity_tensor
fd_dx (Union[float, List[float]], optional) – dx to be used for meshless finite difference and regular finite difference calculation. If float, the same value is used across all dimensions, by default 0.001
bounds (List[float], optional) – bounds to be used for spectral derivatives, by default [2 * np.pi, 2 * np.pi, 2 * np.pi]
compute_connectivity (bool, optional) – Wether to compute the connectivity tensor during forward pass (only applies for least squares method), by default True. Set to false if this can be computed as a part of the dataloader.
device (Optional[str], optional) – The device to use for computation. Options are “cuda” or “cpu”. If not specified, the computation defaults to “cpu”.
Examples
>>> import torch >>> from modulus.sym.eq.pdes.navier_stokes import NavierStokes >>> from modulus.sym.eq.phy_informer import PhysicsInformer >>> ns = NavierStokes(nu=0.1, rho=1.0, dim=2, time=True) >>> phy_inf = PhysicsInformer( ... required_outputs=["continuity", "momentum_x"], ... equations=ns, ... grad_method="finite_difference" ... ) >>> tensor = torch.rand(1, 1, 10, 10) # [N, 1, H, W] >>> sorted(phy_inf.required_inputs) ... ['p', 'u', 'u__t', 'v'] >>> out_dict = phy_inf.forward({"u": tensor, "v": tensor, "u__t": tensor, "p": tensor}) >>> out_dict.keys() dict_keys(['continuity', 'momentum_x']) >>> out_dict["continuity"].shape torch.Size([1, 1, 10, 10])
- forward(inputs)[source]
Forward pass
- property required_inputs
Find the required inputs
- class modulus.sym.eq.spatial_grads.spatial_grads.GradientCalculator(device: Optional[str] = None)[source]
Bases:
object
Unified Gradient calculator class.
- Parameters
device (Optional[str], optional) – The device to use for computation. Options are “cuda” or “cpu”. If not specified, the computation defaults to “cpu”.
Examples
>>> import torch >>> from modulus.sym.eq.spatial_grads.spatial_grads import GradientCalculator >>> coords = torch.rand(10, 3).requires_grad_(True) >>> u = coords[:, 0:1] ** 2 * coords[:, 1:2] ** 3 * coords[:, 2:3] ** 4 >>> grad_calculator = GradientCalculator() >>> input_dict = {"coordinates": coords, "u": u} >>> grad_u_autodiff = grad_calculator.compute_gradients( ... input_dict, ... method_name="autodiff", ... invar="u" ... ) >>> sorted(grad_u_autodiff.keys()) ['u__x', 'u__y', 'u__z'] >>> grad_u_autodiff = grad_calculator.compute_gradients( ... input_dict, ... method_name="autodiff", ... order=2, ... return_mixed_derivs=True, ... invar="u" ... ) >>> sorted(grad_u_autodiff.keys()) ['u__x__x', 'u__x__y', 'u__x__z', 'u__y__x', 'u__y__y', 'u__y__z', 'u__z__x', 'u__z__y', 'u__z__z']
- compute_gradients(input_dict, method_name=None, invar=None, **kwargs)[source]
Compute the gradients
- get_gradient_module(method_name, invar, **kwargs)[source]
Return the gradient module
- class modulus.sym.eq.spatial_grads.spatial_grads.GradientsAutoDiff(invar: str, dim: int = 3, order: int = 1, return_mixed_derivs: bool = False)[source]
Bases:
Module
Compute spatial derivatives using Automatic differentiation.
- Parameters
invar (str) – Variable whose gradients are computed.
dim (int, optional) – Dimensionality of the input (1D, 2D, or 3D), by default 3
order (int, optional) – Order of the derivatives, by default 1 which returns the first order derivatives (e.g. u__x, u__y, u__z). Max order 2 is supported.
return_mixed_derivs (bool, optional) – Whether to include mixed derivatives such as u__x__y, by default False
- forward(input_dict)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
NoteAlthough the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class modulus.sym.eq.spatial_grads.spatial_grads.GradientsFiniteDifference(invar: str, dx: Union[float, int, List[float]], dim: int = 3, order: int = 1, return_mixed_derivs: bool = False)[source]
Bases:
Module
Compute spatial derivatives using Finite Differentiation. The gradients are computed using 2nd order finite difference stencils using convolution operation.
- Parameters
invar (str) – Variable whose gradients are computed.
dx (Union[Union[float, int]]) – dx for the finite difference calculation.
dim (int, optional) – Dimensionality of the input (1D, 2D, or 3D), by default 3
order (int, optional) – Order of the derivatives, by default 1 which returns the first order derivatives (e.g. u__x, u__y, u__z). Max order 2 is supported.
return_mixed_derivs (bool, optional) – Whether to include mixed derivatives such as u__x__y, by default False
- forward(input_dict)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
NoteAlthough the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class modulus.sym.eq.spatial_grads.spatial_grads.GradientsLeastSquares(invar: str, dim: int = 3, order: int = 1, return_mixed_derivs: bool = False)[source]
Bases:
Module
Compute spatial derivatives using Least Squares technique modified to compute gradients on nodes.
Reference: https://scientific-sims.com/cfdlab/Dimitri_Mavriplis/HOME/assets/papers/aiaa20033986.pdf
- Parameters
invar (str) – Variable whose gradients are computed.
dim (int, optional) – Dimensionality of the input (2D, or 3D), by default 3
order (int, optional) – Order of the derivatives, by default 1 which returns the first order derivatives (e.g. u__x, u__y, u__z). Max order 2 is supported.
return_mixed_derivs (bool, optional) – Whether to include mixed derivatives such as u__x__y, by default False
- forward(input_dict)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
NoteAlthough the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class modulus.sym.eq.spatial_grads.spatial_grads.GradientsMeshlessFiniteDifference(invar: str, dx: Union[float, int], dim: int = 3, order: int = 1, return_mixed_derivs: bool = False)[source]
Bases:
Module
Compute spatial derivatives using Meshless Finite Differentiation. The gradients are computed using 2nd order finite difference stencils. For more details, refer: https://docs.nvidia.com/deeplearning/modulus/modulus-sym/user_guide/features/performance.html#meshless-finite-derivatives
- Parameters
invar (str) – Variable whose gradients are computed.
dx (Union[Union[float, int]]) – dx for the finite difference calculation.
dim (int, optional) – Dimensionality of the input (1D, 2D, or 3D), by default 3
order (int, optional) – Order of the derivatives, by default 1 which returns the first order derivatives (e.g. u__x, u__y, u__z). Max order 2 is supported.
return_mixed_derivs (bool, optional) – Whether to include mixed derivatives such as u__x__y, by default False
- forward(input_dict)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
NoteAlthough the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class modulus.sym.eq.spatial_grads.spatial_grads.GradientsSpectral(invar: str, ell: Union[float, int], dim: int = 3, order: int = 1, return_mixed_derivs: bool = False)[source]
Bases:
Module
Compute spatial derivatives using Spectral Differentiation using FFTs.
- Parameters
invar (str) – Variable whose gradients are computed.
ell (Union[Union[float, int]]) – bounds for the domain.
dim (int, optional) – Dimensionality of the input (1D, 2D, or 3D), by default 3
order (int, optional) – Order of the derivatives, by default 1 which returns the first order derivatives (e.g. u__x, u__y, u__z). Max order 2 is supported.
return_mixed_derivs (bool, optional) – Whether to include mixed derivatives such as u__x__y, by default False
- forward(input_dict)[source]
Define the computation performed at every call.
Should be overridden by all subclasses.
NoteAlthough the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- modulus.sym.eq.spatial_grads.spatial_grads.compute_connectivity_tensor(nodes, edges)[source]
Compute connectivity tensor for given nodes and edges.
- Parameters
nodes – Node ids of the nodes in the mesh in [N, 1] format. Where N is the number of nodes.
edges – Edges of the mesh in [M, 2] format. Where M is the number of edges.
- Returns
Tensor containing neighbor nodes for each node. Each node is made to have same neighbors by finding the max neighbors and adding (0, 0) for points with fewer neighbors.
- Return type
torch.Tensor
- modulus.sym.eq.spatial_grads.spatial_grads.compute_stencil2d(coords, model, dx, return_mixed_derivs=False)[source]
Compute 2D stencil required for MFD
- modulus.sym.eq.spatial_grads.spatial_grads.compute_stencil3d(coords, model, dx, return_mixed_derivs=False)[source]
Compute 3D stencil required for MFD