# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Advection diffusion equation
Reference:
https://en.wikipedia.org/wiki/Convection%E2%80%93diffusion_equation
"""
from sympy import Symbol, Function, Number
from modulus.sym.eq.pde import PDE
from modulus.sym.node import Node
[docs]class AdvectionDiffusion(PDE):
"""
Advection diffusion equation
Parameters
==========
T : str
The dependent variable.
D : float, Sympy Symbol/Expr, str
Diffusivity. If `D` is a str then it is
converted to Sympy Function of form 'D(x,y,z,t)'.
If 'D' is a Sympy Symbol or Expression then this
is substituted into the equation.
Q : float, Sympy Symbol/Expr, str
The source term. If `Q` is a str then it is
converted to Sympy Function of form 'Q(x,y,z,t)'.
If 'Q' is a Sympy Symbol or Expression then this
is substituted into the equation. Default is 0.
rho : float, Sympy Symbol/Expr, str
The density. If `rho` is a str then it is
converted to Sympy Function of form 'rho(x,y,z,t)'.
If 'rho' is a Sympy Symbol or Expression then this
is substituted into the equation to allow for
compressible Navier Stokes.
dim : int
Dimension of the diffusion equation (1, 2, or 3). Default is 3.
time : bool
If time-dependent equations or not. Default is False.
mixed_form: bool
If True, use the mixed formulation of the wave equation.
Examples
========
>>> ad = AdvectionDiffusion(D=0.1, rho=1.)
>>> ad.pprint()
advection_diffusion: u*T__x + v*T__y + w*T__z - 0.1*T__x__x - 0.1*T__y__y - 0.1*T__z__z
>>> ad = AdvectionDiffusion(D='D', rho=1, dim=2, time=True)
>>> ad.pprint()
advection_diffusion: -D*T__x__x - D*T__y__y + u*T__x + v*T__y - D__x*T__x - D__y*T__y + T__t
"""
name = "AdvectionDiffusion"
def __init__(
self, T="T", D="D", Q=0, rho="rho", dim=3, time=False, mixed_form=False
):
# set params
self.T = T
self.dim = dim
self.time = time
self.mixed_form = mixed_form
# coordinates
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")
# time
t = Symbol("t")
# make input variables
input_variables = {"x": x, "y": y, "z": z, "t": t}
if self.dim == 1:
input_variables.pop("y")
input_variables.pop("z")
elif self.dim == 2:
input_variables.pop("z")
if not self.time:
input_variables.pop("t")
# velocity componets
u = Function("u")(*input_variables)
v = Function("v")(*input_variables)
w = Function("w")(*input_variables)
# Temperature
assert type(T) == str, "T needs to be string"
T = Function(T)(*input_variables)
# Diffusivity
if type(D) is str:
D = Function(D)(*input_variables)
elif type(D) in [float, int]:
D = Number(D)
# Source
if type(Q) is str:
Q = Function(Q)(*input_variables)
elif type(Q) in [float, int]:
Q = Number(Q)
# Density
if type(rho) is str:
rho = Function(rho)(*input_variables)
elif type(rho) in [float, int]:
rho = Number(rho)
# set equations
self.equations = {}
advection = (
rho * u * (T.diff(x)) + rho * v * (T.diff(y)) + rho * w * (T.diff(z))
)
if not self.mixed_form:
diffusion = (
(rho * D * T.diff(x)).diff(x)
+ (rho * D * T.diff(y)).diff(y)
+ (rho * D * T.diff(z)).diff(z)
)
self.equations["advection_diffusion_" + self.T] = (
T.diff(t) + advection - diffusion - Q
)
elif self.mixed_form:
T_x = Function(self.T + "_x")(*input_variables)
T_y = Function(self.T + "_y")(*input_variables)
if self.dim == 3:
T_z = Function(self.T + "_z")(*input_variables)
else:
T_z = Number(0)
diffusion = (
(rho * D * T_x).diff(x)
+ (rho * D * T_y).diff(y)
+ (rho * D * T_z).diff(z)
)
self.equations["compatibility_" + self.T + "_x"] = T.diff(x) - T_x
self.equations["compatibility_" + self.T + "_y"] = T.diff(y) - T_y
self.equations["compatibility_" + self.T + "_z"] = T.diff(z) - T_z
self.equations["compatibility_" + self.T + "_xy"] = T_x.diff(y) - T_y.diff(
x
)
self.equations["compatibility_" + self.T + "_xz"] = T_x.diff(z) - T_z.diff(
x
)
self.equations["compatibility_" + self.T + "_yz"] = T_y.diff(z) - T_z.diff(
y
)
if self.dim == 2:
self.equations.pop("compatibility_" + self.T + "_z")
self.equations.pop("compatibility_" + self.T + "_xz")
self.equations.pop("compatibility_" + self.T + "_yz")
self.equations["advection_diffusion_" + self.T] = (
T.diff(t) + advection - diffusion - Q
)