NVIDIA Modulus Sym (Latest Release)
Sym (Latest Release)

# Source code for modulus.sym.eq.pdes.diffusion

# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Diffusion equation
"""

from sympy import Symbol, Function, Number

from modulus.sym.eq.pde import PDE
from modulus.sym.node import Node

[docs]class Diffusion(PDE):
"""
Diffusion equation

Parameters
==========
T : str
The dependent variable.
D : float, Sympy Symbol/Expr, str
Diffusivity. If D is a str then it is
converted to Sympy Function of form 'D(x,y,z,t)'.
If 'D' is a Sympy Symbol or Expression then this
is substituted into the equation.
Q : float, Sympy Symbol/Expr, str
The source term. If Q is a str then it is
converted to Sympy Function of form 'Q(x,y,z,t)'.
If 'Q' is a Sympy Symbol or Expression then this
is substituted into the equation. Default is 0.
dim : int
Dimension of the diffusion equation (1, 2, or 3).
Default is 3.
time : bool
If time-dependent equations or not. Default is True.
mixed_form: bool
If True, use the mixed formulation of the diffusion equations.

Examples
========
>>> diff = Diffusion(D=0.1, Q=1, dim=2)
>>> diff.pprint()
diffusion_T: T__t - 0.1*T__x__x - 0.1*T__y__y - 1
>>> diff = Diffusion(T='u', D='D', Q='Q', dim=3, time=False)
>>> diff.pprint()
diffusion_u: -D*u__x__x - D*u__y__y - D*u__z__z - Q - D__x*u__x - D__y*u__y - D__z*u__z
"""

name = "Diffusion"

def __init__(self, T="T", D="D", Q=0, dim=3, time=True, mixed_form=False):
# set params
self.T = T
self.dim = dim
self.time = time
self.mixed_form = mixed_form

# coordinates
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")

# time
t = Symbol("t")

# make input variables
input_variables = {"x": x, "y": y, "z": z, "t": t}
if self.dim == 1:
input_variables.pop("y")
input_variables.pop("z")
elif self.dim == 2:
input_variables.pop("z")
if not self.time:
input_variables.pop("t")

# Temperature
assert type(T) == str, "T needs to be string"
T = Function(T)(*input_variables)

# Diffusivity
if type(D) is str:
D = Function(D)(*input_variables)
elif type(D) in [float, int]:
D = Number(D)

# Source
if type(Q) is str:
Q = Function(Q)(*input_variables)
elif type(Q) in [float, int]:
Q = Number(Q)

# set equations
self.equations = {}

if not self.mixed_form:
self.equations["diffusion_" + self.T] = (
T.diff(t)
- (D * T.diff(x)).diff(x)
- (D * T.diff(y)).diff(y)
- (D * T.diff(z)).diff(z)
- Q
)
elif self.mixed_form:
T_x = Function("T_x")(*input_variables)
T_y = Function("T_y")(*input_variables)
if self.dim == 3:
T_z = Function("T_z")(*input_variables)
else:
T_z = Number(0)

self.equations["diffusion_" + self.T] = (
T.diff(t)
- (D * T_x).diff(x)
- (D * T_y).diff(y)
- (D * T_z).diff(z)
- Q
)
self.equations["compatibility_T_x"] = T.diff(x) - T_x
self.equations["compatibility_T_y"] = T.diff(y) - T_y
self.equations["compatibility_T_z"] = T.diff(z) - T_z
self.equations["compatibility_T_xy"] = T_x.diff(y) - T_y.diff(x)
self.equations["compatibility_T_xz"] = T_x.diff(z) - T_z.diff(x)
self.equations["compatibility_T_yz"] = T_y.diff(z) - T_z.diff(y)
if self.dim == 2:
self.equations.pop("compatibility_T_z")
self.equations.pop("compatibility_T_xz")
self.equations.pop("compatibility_T_yz")

[docs]class DiffusionInterface(PDE):
"""
Matches the boundary conditions at an interface

Parameters
==========
T_1, T_2 : str
Dependent variables to match the boundary conditions at the interface.
D_1, D_2 : float
Diffusivity at the interface.
dim : int
Dimension of the equations (1, 2, or 3). Default is 3.
time : bool
If time-dependent equations or not. Default is True.

Example
========
>>> diff = DiffusionInterface('theta_s', 'theta_f', 0.1, 0.05, dim=2)
>>> diff.pprint()
diffusion_interface_dirichlet_theta_s_theta_f: -theta_f + theta_s
diffusion_interface_neumann_theta_s_theta_f: -0.05*normal_x*theta_f__x
+ 0.1*normal_x*theta_s__x - 0.05*normal_y*theta_f__y
+ 0.1*normal_y*theta_s__y
"""

name = "DiffusionInterface"

def __init__(self, T_1, T_2, D_1, D_2, dim=3, time=True):
# set params
self.T_1 = T_1
self.T_2 = T_2
self.D_1 = D_1
self.D_2 = D_2
self.dim = dim
self.time = time

# coordinates
x, y, z = Symbol("x"), Symbol("y"), Symbol("z")
normal_x, normal_y, normal_z = (
Symbol("normal_x"),
Symbol("normal_y"),
Symbol("normal_z"),
)

# time
t = Symbol("t")

# make input variables
input_variables = {"x": x, "y": y, "z": z, "t": t}
if self.dim == 1:
input_variables.pop("y")
input_variables.pop("z")
elif self.dim == 2:
input_variables.pop("z")
if not self.time:
input_variables.pop("t")

# variables to match the boundary conditions (example Temperature)
T_1 = Function(T_1)(*input_variables)
T_2 = Function(T_2)(*input_variables)

# set equations
self.equations = {}
self.equations["diffusion_interface_dirichlet_" + self.T_1 + "_" + self.T_2] = (
T_1 - T_2
)
flux_1 = self.D_1 * (
normal_x * T_1.diff(x) + normal_y * T_1.diff(y) + normal_z * T_1.diff(z)
)
flux_2 = self.D_2 * (
normal_x * T_2.diff(x) + normal_y * T_2.diff(y) + normal_z * T_2.diff(z)
)
self.equations["diffusion_interface_neumann_" + self.T_1 + "_" + self.T_2] = (
flux_1 - flux_2
)

© Copyright 2023, NVIDIA Modulus Team. Last updated on Jul 25, 2024.