# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Union, Callable
from pathlib import Path
import inspect
import torch
import numpy as np
from modulus.sym.domain.inferencer import Inferencer
from modulus.sym.domain.constraint import Constraint
from modulus.sym.graph import Graph
from modulus.sym.key import Key
from modulus.sym.node import Node
from modulus.sym.distributed import DistributedManager
from modulus.sym.utils.io import InferencerPlotter
from modulus.sym.utils.io.vtk import var_to_polyvtk, VTKBase, VTKUniformGrid
from modulus.sym.dataset import DictInferencePointwiseDataset
[docs]class PointwiseInferencer(Inferencer):
"""
Pointwise Inferencer that allows inferencing on pointwise data
Parameters
----------
nodes : List[Node]
List of Modulus Nodes to unroll graph with.
invar : Dict[str, np.ndarray (N, 1)]
Dictionary of numpy arrays as input.
output_names : List[str]
List of desired outputs.
batch_size : int, optional
Batch size used when running validation, by default 1024
plotter : InferencerPlotter
Modulus plotter for showing results in tensorboard.
requires_grad : bool = False
If automatic differentiation is needed for computing results.
"""
def __init__(
self,
nodes: List[Node],
invar: Dict[str, np.array],
output_names: List[str],
batch_size: int = 1024,
plotter: InferencerPlotter = None,
requires_grad: bool = False,
model=None,
):
# get dataset and dataloader
self.dataset = DictInferencePointwiseDataset(
invar=invar, output_names=output_names
)
self.dataloader = Constraint.get_dataloader(
dataset=self.dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=0,
distributed=False,
infinite=False,
)
# construct model from nodes
if model is None:
self.model = Graph(
nodes,
Key.convert_list(self.dataset.invar_keys),
Key.convert_list(self.dataset.outvar_keys),
)
else:
self.model = model
self.manager = DistributedManager()
self.device = self.manager.device
self.model.to(self.device)
# set foward method
self.requires_grad = requires_grad
self.forward = self.forward_grad if requires_grad else self.forward_nograd
# set plotter
self.plotter = plotter
def eval_epoch(self):
invar_cpu = {key: [] for key in self.dataset.invar_keys}
predvar_cpu = {key: [] for key in self.dataset.outvar_keys}
# Loop through mini-batches
for i, (invar0,) in enumerate(self.dataloader):
# Move data to device
invar = Constraint._set_device(
invar0, device=self.device, requires_grad=self.requires_grad
)
pred_outvar = self.forward(invar)
invar_cpu = {key: value + [invar0[key]] for key, value in invar_cpu.items()}
predvar_cpu = {
key: value + [pred_outvar[key].cpu().detach().numpy()]
for key, value in predvar_cpu.items()
}
# Concat mini-batch arrays
invar = {key: np.concatenate(value) for key, value in invar_cpu.items()}
predvar = {key: np.concatenate(value) for key, value in predvar_cpu.items()}
return invar, predvar
def save_results(self, name, results_dir, writer, save_filetypes, step):
# evaluate on entire dataset
invar, predvar = self.eval_epoch()
# save batch to vtk/np files TODO clean this up after graph unroll stuff
if "np" in save_filetypes:
np.savez(results_dir + name, {**invar, **predvar})
if "vtk" in save_filetypes:
var_to_polyvtk({**invar, **predvar}, results_dir + name)
# add tensorboard plots
if self.plotter is not None:
self.plotter._add_figures(
"Inferencers", name, results_dir, writer, step, invar, predvar
)