deeplearning/modulus/modulus-sym/_modules/modulus/sym/domain/validator/validator.html

Source code for modulus.sym.domain.validator.validator

# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch


[docs]class Validator: """ Validator base class """ def forward_grad(self, invar): pred_outvar = self.model(invar) return pred_outvar def forward_nograd(self, invar): with torch.no_grad(): pred_outvar = self.model(invar) return pred_outvar def save_results(self, name, results_dir, writer, save_filetypes, step): raise NotImplementedError("Subclass of Validator needs to implement this") @staticmethod def _l2_relative_error(true_var, pred_var): # TODO replace with metric classes new_var = {} for key in true_var.keys(): new_var["l2_relative_error_" + str(key)] = torch.sqrt( torch.mean(torch.square(true_var[key] - pred_var[key])) / torch.var(true_var[key]) ) return new_var
© Copyright 2023, NVIDIA Modulus Team. Last updated on Sep 25, 2023.