deeplearning/modulus/modulus-sym/_modules/modulus/sym/geometry/curve.html
Source code for modulus.sym.geometry.curve
# SPDX-FileCopyrightText: Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES.
# SPDX-FileCopyrightText: All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Defines different Curve objects
"""
import types
import numpy as np
import sympy
import symengine
from chaospy.distributions.sampler.sequences.primes import create_primes
from chaospy.distributions.sampler.sequences.van_der_corput import (
create_van_der_corput_samples as create_samples,
)
from modulus.sym.utils.sympy import np_lambdify
from .parameterization import Parameterization, Parameter
from .helper import _sympy_func_to_func
[docs]class Curve:
"""A Curve object that keeps track of the surface/perimeter of a geometry.
The curve object also contains normals and area/length of curve.
"""
def __init__(self, sample, dims, parameterization=Parameterization()):
# store attributes
self._sample = sample
self._dims = dims
self.parameterization = parameterization
def sample(
self, nr_points, criteria=None, parameterization=None, quasirandom=False
):
# use internal parameterization if not given
if parameterization is None:
parameterization = self.parameterization
# continually sample points throwing out points that don't satisfy criteria
invar = {
key: np.empty((0, 1))
for key in self.dims + ["normal_" + x for x in self.dims] + ["area"]
}
params = {key: np.empty((0, 1)) for key in parameterization.parameters}
total_sampled = 0
total_tried = 0
nr_try = 0
while True:
# sample curve
local_invar, local_params = self._sample(
nr_points, parameterization, quasirandom
)
# compute given criteria and remove points
if criteria is not None:
computed_criteria = criteria(local_invar, local_params)
local_invar = {
key: value[computed_criteria[:, 0], :]
for key, value in local_invar.items()
}
local_params = {
key: value[computed_criteria[:, 0], :]
for key, value in local_params.items()
}
# store invar
for key in local_invar.keys():
invar[key] = np.concatenate([invar[key], local_invar[key]], axis=0)
# store params
for key in local_params.keys():
params[key] = np.concatenate([params[key], local_params[key]], axis=0)
# keep track of sampling
total_sampled = next(iter(invar.values())).shape[0]
total_tried += nr_points
nr_try += 1
# break when finished sampling
if total_sampled >= nr_points:
for key, value in invar.items():
invar[key] = value[:nr_points]
for key, value in params.items():
params[key] = value[:nr_points]
break
# check if couldn't sample
if nr_try > 1000 and total_sampled < 1:
raise Exception("Unable to sample curve")
return invar, params
@property
def dims(self):
"""
Returns
-------
dims : list of strings
output can be ['x'], ['x','y'], or ['x','y','z']
"""
return ["x", "y", "z"][: self._dims]
[docs] def approx_area(
self,
parameterization=Parameterization(),
criteria=None,
approx_nr=10000,
quasirandom=False,
):
"""
Parameters
----------
parameterization: dict with of Parameters and their ranges
If the curve is parameterized then you can provide ranges
for the parameters with this.
criteria : None, SymPy boolean exprs
Calculate area discarding regions that don't satisfy
this criteria.
approx_nr : int
Area might be difficult to compute if parameterized. In
this case the area is approximated by sampling `area`,
`approx_nr` number of times. This amounts to monte carlo
integration.
Returns
-------
area : float
area of curve
"""
s, p = self._sample(
nr_points=approx_nr,
parameterization=parameterization,
quasirandom=quasirandom,
)
computed_criteria = criteria(s, p)
total_area = np.sum(s["area"][computed_criteria[:, 0], :])
return total_area
[docs] def scale(self, x, parameterization=Parameterization()):
"""
scale curve
Parameters
----------
x : float, SymPy Symbol/Exprs
scale factor.
"""
def _sample(internal_sample, dims, x):
if isinstance(x, (float, int)):
pass
elif isinstance(x, sympy.Basic):
x = _sympy_func_to_func(x)
else:
raise TypeError("Scaling by type " + str(type(x)) + "is not supported")
def sample(
nr_points, parameterization=Parameterization(), quasirandom=False
):
# sample points
invar, params = internal_sample(
nr_points, parameterization, quasirandom
)
# compute scale if needed
if isinstance(x, (float, int)):
computed_scale = x
else:
computed_scale = s(params)
# scale invar
for d in dims:
invar[d] *= x
invar["area"] *= x ** (len(dims) - 1)
return invar, params
return sample
return Curve(
_sample(self._sample, self.dims, x),
len(self.dims),
self.parameterization.union(parameterization),
)
[docs] def translate(self, xyz, parameterization=Parameterization()):
"""
translate curve
Parameters
----------
xyz : tuple of floats, ints, SymPy Symbol/Exprs
translate curve by these values.
"""
def _sample(internal_sample, dims, xyz):
compiled_xyz = []
for i, x in enumerate(xyz):
if isinstance(x, (float, int)):
compiled_xyz.append(x)
elif isinstance(x, sympy.Basic):
compiled_xyz.append(_sympy_func_to_func(x))
else:
raise TypeError(
"Translate by type " + str(type(x)) + "is not supported"
)
def sample(
nr_points, parameterization=Parameterization(), quasirandom=False
):
# sample points
invar, params = internal_sample(
nr_points, parameterization, quasirandom
)
# compute translation if needed
computed_translation = []
for x in compiled_xyz:
if isinstance(x, (float, int)):
computed_translation.append(x)
else:
computed_translation.append(x(params))
# translate invar
for d, x in zip(dims, computed_translation):
invar[d] += x
return invar, params
return sample
return Curve(
_sample(self._sample, self.dims, xyz),
len(self.dims),
self.parameterization.union(parameterization),
)
[docs] def rotate(self, angle, axis, parameterization=Parameterization()):
"""
rotate curve
Parameters
----------
x : float, SymPy Symbol/Exprs
scale factor.
"""
def _sample(internal_sample, dims, angle, axis):
if isinstance(angle, (float, int)):
pass
elif isinstance(angle, sympy.Basic):
angle = _sympy_func_to_func(angle)
else:
raise TypeError(
"Scaling by type " + str(type(angle)) + "is not supported"
)
def sample(
nr_points, parameterization=Parameterization(), quasirandom=False
):
# sample points
invar, params = internal_sample(
nr_points, parameterization, quasirandom
)
# compute translation if needed
if isinstance(angle, (float, int)):
computed_angle = angle
else:
computed_angle = angle(params)
# angle invar
rotated_invar = {**invar}
rotated_dims = [key for key in self.dims if key != axis]
rotated_invar[rotated_dims[0]] = (
np.cos(computed_angle) * invar[rotated_dims[0]]
- np.sin(computed_angle) * invar[rotated_dims[1]]
)
rotated_invar["normal_" + rotated_dims[0]] = (
np.cos(computed_angle) * invar["normal_" + rotated_dims[0]]
- np.sin(computed_angle) * invar["normal_" + rotated_dims[1]]
)
rotated_invar[rotated_dims[1]] = (
np.sin(computed_angle) * invar[rotated_dims[0]]
+ np.cos(computed_angle) * invar[rotated_dims[1]]
)
rotated_invar["normal_" + rotated_dims[1]] = (
np.sin(computed_angle) * invar["normal_" + rotated_dims[0]]
+ np.cos(computed_angle) * invar["normal_" + rotated_dims[1]]
)
return rotated_invar, params
return sample
return Curve(
_sample(self._sample, self.dims, angle, axis),
len(self.dims),
self.parameterization.union(parameterization),
)def invert_normal(self):
def _sample(internal_sample, dims):
def sample(
nr_points, parameterization=Parameterization(), quasirandom=False
):
s, p = internal_sample(nr_points, parameterization, quasirandom)
for d in dims:
s["normal_" + d] = -s["normal_" + d]
return s, p
return sample
return Curve(
_sample(self._sample, self.dims), len(self.dims), self.parameterization
)
[docs]class SympyCurve(Curve):
"""Curve defined by sympy functions
Parameters
----------
functions : dictionary of SymPy Exprs
Parameterized curve in 1, 2 or 3 dimensions. For example, a
circle might have::
functions = {'x': cos(theta),
\t'y': sin(theta),
\t'normal_x': cos(theta),
\t'normal_y': sin(theta)}
TODO: refactor to remove normals.
ranges : dictionary of Sympy Symbols and ranges
This gives the ranges for the parameters in the parameterized
curve. For example, a circle might have `ranges = {theta: (0, 2*pi)}`.
area : float, int, SymPy Exprs
The surface area/perimeter of the curve.
criteria : SymPy Boolean Function
If this boolean expression is false then we do not
sample their on curve. This can be used to enforce
uniform sample probability.
"""
def __init__(self, functions, parameterization, area, criteria=None):
# lambdify functions
lambdify_functions = {}
for key, func in functions.items():
try:
func = float(func)
except:
pass
if isinstance(func, float):
lambdify_functions[key] = float(func)
elif isinstance(func, (sympy.Basic, symengine.Basic, Parameter)):
lambdify_functions[key] = _sympy_func_to_func(func)
else:
raise TypeError("function type not supported: " + str(type(func)))
# lambdify area function
try:
area = float(area)
except:
pass
if isinstance(area, float):
area_fn = float(area)
elif isinstance(area, (sympy.Basic, symengine.Basic, Parameter)):
area_fn = _sympy_func_to_func(area)
else:
raise TypeError("area type not supported: " + str(type(area)))
lambdify_functions["area"] = area_fn
# lambdify criteria function
if criteria is not None:
criteria = _sympy_func_to_func(criteria)
# create closure for sample function
def _sample(lambdify_functions, criteria, internal_parameterization):
def sample(
nr_points, parameterization=Parameterization(), quasirandom=False
):
# use internal parameterization if not given
i_parameterization = internal_parameterization.copy()
for key, value in parameterization.param_ranges.items():
i_parameterization.param_ranges[key] = value
# continually sample points throwing out points that don't satisfy criteria
invar = {
str(key): np.empty((0, 1)) for key in lambdify_functions.keys()
}
params = {
str(key): np.empty((0, 1))
for key in parameterization.param_ranges.keys()
}
total_sampled = 0
total_tried = 0
nr_try = 0
while True:
# sample parameter ranges
local_params = i_parameterization.sample(nr_points, quasirandom)
# compute curve points from functions
local_invar = {}
for key, func in lambdify_functions.items():
if isinstance(func, (float, int)):
local_invar[key] = np.full_like(
next(iter(local_params.values())), func
)
else:
local_invar[key] = func(local_params)
local_invar["area"] /= next(iter(local_params.values())).shape[0]
# remove points that don't satisfy curve criteria if needed
if criteria is not None:
# compute curve criteria
computed_criteria = criteria(local_params).astype(bool)
# remove elements points based on curve criteria
local_invar = {
key: value[computed_criteria[:, 0], :]
for key, value in local_invar.items()
}
local_params = {
key: value[computed_criteria[:, 0], :]
for key, value in local_params.items()
}
# only store external parameters
for key in list(local_params.keys()):
if key not in parameterization.parameters:
local_params.pop(key)
# store invar
for key in local_invar.keys():
invar[key] = np.concatenate(
[invar[key], local_invar[key]], axis=0
)
# store params
for key in local_params.keys():
params[key] = np.concatenate(
[params[key], local_params[key]], axis=0
)
# keep track of sampling
total_sampled = next(iter(invar.values())).shape[0]
total_tried += next(iter(local_invar.values())).shape[0]
nr_try += 1
# break when finished sampling
if total_sampled >= nr_points:
for key, value in invar.items():
invar[key] = value[:nr_points]
for key, value in params.items():
params[key] = value[:nr_points]
break
# check if couldn't sample
if nr_try > 10000 and total_sampled < 1:
raise Exception("Unable to sample curve")
return invar, params
return sample
# initialize curve
Curve.__init__(
self,
_sample(lambdify_functions, criteria, parameterization),
len(functions) // 2,
parameterization=parameterization,
)