KPI
Accuracy
Perception Pipeline
Performance
Perception Microservice
Runtime profiling of the Perception (DeepStream) microservice:
Detection Model |
ReID Model |
GPU |
Number of Streams (30 FPS) |
CPU Utilization |
GPU Utilization |
---|---|---|---|---|---|
PeopleNet v2.6 (ResNet-34) |
ReIdentificationNet v1.1 |
NVIDIA T4 |
12 |
3.2% |
95% |
PeopleNet v2.6 (ResNet-34) |
ReIdentificationNet v1.1 |
NVIDIA A30 |
23 |
1.5% |
93% |
PeopleNet v2.6 (ResNet-34) |
ReIdentificationNet v1.1 |
NVIDIA A100 |
27 |
380% |
80% |
PeopleNet Transformer |
ReIdentificationNet Transformer (Swin Tiny) |
NVIDIA A100 |
3 |
147% |
86% |
Model Inference Resolution:
PeopleNet v2.6: INT8 inference
ReidentificationNet v1.1: FP16 inference
ReIdentificationNet Transformer: FP16 inference
PeopleNet Transformer: FP16 inference
Metrics obtained on the below system configuration:
NVIDIA T4 GPU : Intel(R) Xeon(R) Gold 6126 CPU @ 2.60 GHz
NVIDIA A30 GPU: Intel(R) Xeon(R) Gold 6338N CPU @ 2.20 GHz
NVIDIA A100 GPU: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz
Analytics Microservices
Runtime profiling of the analytics & API components:
Each one is profiled separately. Perception metadata is from a perception microservice, on a different machine but in the same cluster, processing RTSP streams.
Components |
GPU Utilization |
CPU Memory |
CPU Utilization |
Comment |
---|---|---|---|---|
Analytics |
N/A |
2.344 GiB |
90.4% |
|
Behavior Learning - Ingestion |
N/A |
2.338 GiB |
158.25% |
|
Behavior Learning - Training |
30% |
3.57 GiB |
108% |
GPU is used only during clustering & model training. |
Triton Inference server |
10% |
615.7 MiB |
0.34% |
|
Web API |
N/A |
81.21 MiB |
1% |
CPU usage will go up based on how many users accessing the UI. |
Kafka |
N/A |
1.504 GiB |
9% |
|
Logstash |
N/A |
1.103 GiB |
23% |
|
Elastic |
N/A |
1.802 GiB |
81% |
Number of Input Metadata Streams: 2
Metrics obtained on the below system configuration:
GPU: NVIDIA A100
CPU: Intel(R) Xeon(R) Gold 6258R CPU @ 2.70GHz
Measurements collected using the following models:
ReIdentificationNet Transformer: FP16 inference
PeopleNet Transformer: FP16 inference
Media Microservices
Media Microservice KPI details vst kpi