Source code for nemo_rl.data.eval_datasets.gpqa

# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""GPQA dataset and its variants."""

import random
from typing import Any, Literal, Optional

from datasets import load_dataset

from nemo_rl.data import processors
from nemo_rl.data.interfaces import TaskDataSpec


[docs] class GPQADataset: def __init__( self, variant: Literal["diamond", "main"] = "diamond", prompt_file: Optional[str] = None, system_prompt_file: Optional[str] = None, ): ds = load_dataset("Idavidrein/gpqa", f"gpqa_{variant}", split="train") self._rng = random.Random() self.rekeyed_ds = ds.map(self._rekey, remove_columns=ds.column_names) self.task_spec = TaskDataSpec( task_name=f"GPQA_{variant}", prompt_file=prompt_file, system_prompt_file=system_prompt_file, ) self.processor = processors.multichoice_qa_processor
[docs] def _rekey(self, data: dict[str, Any]): choices = [ data["Correct Answer"], data["Incorrect Answer 1"], data["Incorrect Answer 2"], data["Incorrect Answer 3"], ] permutation = self._rng.sample(range(4), 4) choices = [choices[i] for i in permutation] correct_index = choices.index(data["Correct Answer"]) correct_answer = "ABCD"[correct_index] return { "question": data["Question"], "options": dict( A=choices[0], B=choices[1], C=choices[2], D=choices[3], ), "answer": correct_answer, }