Source code for nemo_rl.data.eval_datasets.gpqa
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GPQA dataset and its variants."""
import random
from typing import Any, Literal, Optional
from datasets import load_dataset
from nemo_rl.data import processors
from nemo_rl.data.interfaces import TaskDataSpec
[docs]
class GPQADataset:
def __init__(
self,
variant: Literal["diamond", "main"] = "diamond",
prompt_file: Optional[str] = None,
system_prompt_file: Optional[str] = None,
):
ds = load_dataset("Idavidrein/gpqa", f"gpqa_{variant}", split="train")
self._rng = random.Random()
self.rekeyed_ds = ds.map(self._rekey, remove_columns=ds.column_names)
self.task_spec = TaskDataSpec(
task_name=f"GPQA_{variant}",
prompt_file=prompt_file,
system_prompt_file=system_prompt_file,
)
self.processor = processors.multichoice_qa_processor
[docs]
def _rekey(self, data: dict[str, Any]):
choices = [
data["Correct Answer"],
data["Incorrect Answer 1"],
data["Incorrect Answer 2"],
data["Incorrect Answer 3"],
]
permutation = self._rng.sample(range(4), 4)
choices = [choices[i] for i in permutation]
correct_index = choices.index(data["Correct Answer"])
correct_answer = "ABCD"[correct_index]
return {
"question": data["Question"],
"options": dict(
A=choices[0],
B=choices[1],
C=choices[2],
D=choices[3],
),
"answer": correct_answer,
}