Source code for nemo_rl.data.eval_datasets.mmlu
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MMLU dataset and its variants."""
from typing import Any, Literal, Optional
from datasets import load_dataset
from nemo_rl.data import processors
from nemo_rl.data.interfaces import TaskDataSpec
[docs]
class MMLUDataset:
def __init__(
self,
language: Literal[
"AR-XY",
"BN-BD",
"DE-DE",
"EN-US",
"ES-LA",
"FR-FR",
"HI-IN",
"ID-ID",
"IT-IT",
"JA-JP",
"KO-KR",
"PT-BR",
"ZH-CN",
"SW-KE",
"YO-NG",
] = "EN-US",
prompt_file: Optional[str] = None,
system_prompt_file: Optional[str] = None,
):
if language != "EN-US":
data_files = f"https://openaipublic.blob.core.windows.net/simple-evals/mmlu_{language}.csv"
else:
data_files = (
"https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv"
)
ds = load_dataset(
"csv",
data_files=data_files,
split="train",
)
self.rekeyed_ds = ds.map(self._rekey, remove_columns=ds.column_names)
self.task_spec = TaskDataSpec(
task_name=f"MMLU_{language}",
prompt_file=prompt_file,
system_prompt_file=system_prompt_file,
)
self.processor = processors.multichoice_qa_processor
[docs]
def _rekey(self, data: dict[str, Any]):
return {
"question": data["Question"],
"options": dict(
A=data["A"],
B=data["B"],
C=data["C"],
D=data["D"],
),
"answer": data["Answer"],
"subject": data["Subject"],
}