Source code for nemo_rl.data.eval_datasets.mmlu

# Copyright (c) 2025, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""MMLU dataset and its variants."""

from typing import Any, Literal, Optional

from datasets import load_dataset

from nemo_rl.data import processors
from nemo_rl.data.interfaces import TaskDataSpec


[docs] class MMLUDataset: def __init__( self, language: Literal[ "AR-XY", "BN-BD", "DE-DE", "EN-US", "ES-LA", "FR-FR", "HI-IN", "ID-ID", "IT-IT", "JA-JP", "KO-KR", "PT-BR", "ZH-CN", "SW-KE", "YO-NG", ] = "EN-US", prompt_file: Optional[str] = None, system_prompt_file: Optional[str] = None, ): if language != "EN-US": data_files = f"https://openaipublic.blob.core.windows.net/simple-evals/mmlu_{language}.csv" else: data_files = ( "https://openaipublic.blob.core.windows.net/simple-evals/mmlu.csv" ) ds = load_dataset( "csv", data_files=data_files, split="train", ) self.rekeyed_ds = ds.map(self._rekey, remove_columns=ds.column_names) self.task_spec = TaskDataSpec( task_name=f"MMLU_{language}", prompt_file=prompt_file, system_prompt_file=system_prompt_file, ) self.processor = processors.multichoice_qa_processor
[docs] def _rekey(self, data: dict[str, Any]): return { "question": data["Question"], "options": dict( A=data["A"], B=data["B"], C=data["C"], D=data["D"], ), "answer": data["Answer"], "subject": data["Subject"], }