NVIDIA Holoscan SDK v0.4.0
Clara Holoscan v0.4.0

Program Listing for File gxf_parameter_adaptor.hpp

Return to documentation for file (include/holoscan/core/executors/gxf/gxf_parameter_adaptor.hpp)

Copy
Copied!
            

/* * SPDX-FileCopyrightText: Copyright (c) 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef HOLOSCAN_CORE_EXECUTORS_GXF_GXF_PARAMETER_ADAPTOR_HPP #define HOLOSCAN_CORE_EXECUTORS_GXF_GXF_PARAMETER_ADAPTOR_HPP #include <functional> #include <memory> #include <string> #include <type_traits> #include <typeindex> #include <typeinfo> #include <unordered_map> #include <vector> #include "../../common.hpp" #include "../../arg.hpp" #include "../../gxf/gxf_condition.hpp" #include "../../gxf/gxf_resource.hpp" #include "../../gxf/gxf_utils.hpp" #include "../../io_spec.hpp" #include "../../parameter.hpp" namespace holoscan::gxf { class GXFParameterAdaptor { public: using AdaptFunc = std::function<gxf_result_t(gxf_context_t context, gxf_uid_t uid, const char* key, const ArgType& arg_type, const std::any& any_value)>; inline static AdaptFunc none_param_handler = [](gxf_context_t context, gxf_uid_t uid, const char* key, const ArgType& arg_type, const std::any& any_value) { (void)context; (void)uid; (void)key; (void)arg_type; (void)any_value; HOLOSCAN_LOG_ERROR("Unable to handle parameter: {}", key); return GXF_FAILURE; }; static GXFParameterAdaptor& get_instance(); static gxf_result_t set_param(gxf_context_t context, gxf_uid_t uid, const char* key, ParameterWrapper& param_wrap) { auto& instance = get_instance(); const auto index = std::type_index(param_wrap.type()); const AdaptFunc& func = instance.get_param_handler(index); if (&func == &none_param_handler) { HOLOSCAN_LOG_ERROR("Unable to handle parameter: {}", key); return GXF_FAILURE; } return func(context, uid, key, param_wrap.arg_type(), param_wrap.value()); } template <typename typeT> static void ensure_type() { auto& instance = get_instance(); instance.add_param_handler<typeT>(); } AdaptFunc& get_param_handler(std::type_index index) { if (function_map_.find(index) == function_map_.end()) { HOLOSCAN_LOG_WARN("No parameter handler for type '{}' exists", index.name()); return GXFParameterAdaptor::none_param_handler; } auto& handler = function_map_[index]; return handler; } template <typename typeT> void add_param_handler(AdaptFunc func) { function_map_.try_emplace(std::type_index(typeid(typeT)), func); } void add_param_handler(std::type_index index, AdaptFunc func) { function_map_.try_emplace(index, func); } template <typename typeT> void add_param_handler() { function_map_.try_emplace( std::type_index(typeid(typeT)), [](gxf_context_t context, gxf_uid_t uid, const char* key, const ArgType& arg_type, const std::any& any_value) { (void)context; (void)uid; (void)key; (void)arg_type; (void)any_value; try { auto& param = *std::any_cast<Parameter<typeT>*>(any_value); param.set_default_value(); // set default value if not set. // If the parameter (any_value) is from the native operator // (which means 'uid == -1'), return here without setting GXF parameter. if (uid == -1) { return GXF_SUCCESS; } if (param.has_value()) { auto& value = param.get(); switch (arg_type.container_type()) { case ArgContainerType::kNative: { switch (arg_type.element_type()) { case ArgElementType::kBoolean: { if constexpr (std::is_same_v<typeT, bool>) { return GxfParameterSetBool(context, uid, key, value); } break; } case ArgElementType::kInt8: { HOLOSCAN_LOG_ERROR("GXF does not support int8_t parameter for key '{}'", key); return GXF_FAILURE; } case ArgElementType::kUnsigned8: { // GXF Doesn't support uint8_t parameter so use a workaround with // GxfParameterSetFromYamlNode. if constexpr (std::is_same_v<typeT, uint8_t>) { YAML::Node yaml_node; // uint8_t is not supported natively by yaml-cpp so push it as a uint32_t // so that GXF can handle it. yaml_node.push_back(static_cast<uint32_t>(value)); YAML::Node value_node = yaml_node[0]; return GxfParameterSetFromYamlNode(context, uid, key, &value_node, ""); } break; } case ArgElementType::kInt16: { // GXF Doesn't support int16_t parameter so use a workaround with // GxfParameterSetFromYamlNode. if constexpr (std::is_same_v<typeT, int16_t>) { YAML::Node yaml_node; yaml_node.push_back(value); YAML::Node value_node = yaml_node[0]; return GxfParameterSetFromYamlNode(context, uid, key, &value_node, ""); } break; } case ArgElementType::kUnsigned16: { if constexpr (std::is_same_v<typeT, uint16_t>) { return GxfParameterSetUInt16(context, uid, key, value); } break; } case ArgElementType::kInt32: { if constexpr (std::is_same_v<typeT, int32_t>) { return GxfParameterSetInt32(context, uid, key, value); } break; } case ArgElementType::kUnsigned32: { if constexpr (std::is_same_v<typeT, uint32_t>) { return GxfParameterSetUInt32(context, uid, key, value); } break; } case ArgElementType::kInt64: { if constexpr (std::is_same_v<typeT, int64_t>) { return GxfParameterSetInt64(context, uid, key, value); } break; } case ArgElementType::kUnsigned64: { if constexpr (std::is_same_v<typeT, uint64_t>) { return GxfParameterSetUInt64(context, uid, key, value); } break; } case ArgElementType::kFloat32: { // GXF Doesn't support float parameter so use a workaround with // GxfParameterSetFromYamlNode. if constexpr (std::is_same_v<typeT, float>) { YAML::Node yaml_node; yaml_node.push_back(value); YAML::Node value_node = yaml_node[0]; return GxfParameterSetFromYamlNode(context, uid, key, &value_node, ""); } break; } case ArgElementType::kFloat64: { if constexpr (std::is_same_v<typeT, double>) { return GxfParameterSetFloat64(context, uid, key, value); } break; } case ArgElementType::kString: { if constexpr (std::is_same_v<typeT, std::string>) { return GxfParameterSetStr(context, uid, key, value.c_str()); } break; } case ArgElementType::kHandle: { HOLOSCAN_LOG_ERROR("Unable to set handle parameter for key '{}'", key); return GXF_FAILURE; } case ArgElementType::kYAMLNode: { HOLOSCAN_LOG_ERROR("Unable to handle ArgElementType::kYAMLNode for key '{}'", key); return GXF_FAILURE; } case ArgElementType::kIOSpec: { if constexpr (std::is_same_v<typeT, holoscan::IOSpec*>) { if (value) { auto gxf_resource = std::dynamic_pointer_cast<GXFResource>(value->resource()); gxf_uid_t cid = gxf_resource->gxf_cid(); return GxfParameterSetHandle(context, uid, key, cid); } else { // If the IOSpec is null, do not set the parameter. return GXF_SUCCESS; } } break; } case ArgElementType::kResource: { if constexpr (std::is_same_v< typename holoscan::type_info<typeT>::element_type, std::shared_ptr<Resource>> && holoscan::type_info<typeT>::dimension == 0) { // Set the handle parameter only if the resource is valid. if (value) { auto gxf_resource = std::dynamic_pointer_cast<GXFResource>(value); // Initialize GXF component if it is not already initialized. if (gxf_resource->gxf_context() == nullptr) { gxf_resource->gxf_eid(gxf::get_component_eid( context, uid)); // set Entity ID of the component gxf_resource->initialize(); } return GxfParameterSetHandle(context, uid, key, gxf_resource->gxf_cid()); } else { HOLOSCAN_LOG_TRACE( "Resource is null for key '{}'. Not setting parameter.", key); return GXF_SUCCESS; } } HOLOSCAN_LOG_ERROR("Unable to handle ArgElementType::kResource for key '{}'", key); break; } case ArgElementType::kCondition: { if constexpr (std::is_same_v< typename holoscan::type_info<typeT>::element_type, std::shared_ptr<Condition>> && holoscan::type_info<typeT>::dimension == 0) { auto gxf_condition = std::dynamic_pointer_cast<GXFCondition>(value); if (value) { // Initialize GXF component if it is not already initialized. if (gxf_condition->gxf_context() == nullptr) { gxf_condition->gxf_eid(gxf::get_component_eid( context, uid)); // set Entity ID of the component gxf_condition->initialize(); } return GxfParameterSetHandle(context, uid, key, gxf_condition->gxf_cid()); } HOLOSCAN_LOG_ERROR( "Unable to handle ArgElementType::kCondition for key '{}'", key); } break; } case ArgElementType::kCustom: { HOLOSCAN_LOG_ERROR("Unable to handle ArgElementType::kCustom for key '{}'", key); return GXF_FAILURE; } } break; } case ArgContainerType::kVector: { switch (arg_type.element_type()) { case ArgElementType::kInt8: { HOLOSCAN_LOG_ERROR( "GXF does not support std::vector<int8_t> parameter " "for key '{}'", key); return GXF_FAILURE; } case ArgElementType::kUnsigned8: { // GXF Doesn't support std::vector parameter so use a workaround with // GxfParameterSetFromYamlNode. if constexpr (std::is_same_v<typeT, std::vector<uint8_t>>) { // Create vector of Handles YAML::Node yaml_node; for (auto& item : value) { // uint8_t is not supported natively by yaml-cpp so push it as a uint32_t // so that GXF can handle it. yaml_node.push_back(static_cast<uint32_t>(item)); } return GxfParameterSetFromYamlNode(context, uid, key, &yaml_node, ""); } else if constexpr (std::is_same_v<typeT, std::vector<std::vector<uint32_t>>>) { YAML::Node yaml_node; for (const std::vector<uint32_t>& vec : value) { for (uint32_t item : vec) { yaml_node.push_back(item); } } return GxfParameterSetFromYamlNode(context, uid, key, &yaml_node, ""); } break; } case ArgElementType::kBoolean: case ArgElementType::kInt16: case ArgElementType::kUnsigned16: case ArgElementType::kInt32: case ArgElementType::kUnsigned32: case ArgElementType::kInt64: case ArgElementType::kUnsigned64: case ArgElementType::kFloat32: case ArgElementType::kFloat64: case ArgElementType::kString: { // GXF Doesn't support std::vector parameter so use a workaround with // GxfParameterSetFromYamlNode. if constexpr (holoscan::is_one_of_v< typename holoscan::type_info<typeT>::element_type, bool, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t, float, double, std::string>) { if constexpr (holoscan::dimension_of_v<typeT> == 1) { // Create vector of Handles YAML::Node yaml_node = YAML::Load("[]"); // Create an empty sequence for (typename holoscan::type_info<typeT>::element_type item : value) { yaml_node.push_back(item); } return GxfParameterSetFromYamlNode(context, uid, key, &yaml_node, ""); } else if constexpr (holoscan::dimension_of_v<typeT> == 2) { YAML::Node yaml_node = YAML::Load("[]"); // Create an empty sequence for (std::vector<typename holoscan::type_info<typeT>::element_type>& vec : value) { YAML::Node inner_yaml_node = YAML::Load("[]"); // Create an empty sequence for (typename holoscan::type_info<typeT>::element_type item : vec) { inner_yaml_node.push_back(item); } if (inner_yaml_node.size() > 0) { yaml_node.push_back(inner_yaml_node); } } return GxfParameterSetFromYamlNode(context, uid, key, &yaml_node, ""); } } break; } case ArgElementType::kHandle: { HOLOSCAN_LOG_ERROR( "Unable to handle vector of ArgElementType::kHandle for key '{}'", key); return GXF_FAILURE; } case ArgElementType::kYAMLNode: { HOLOSCAN_LOG_ERROR( "Unable to handle vector of ArgElementType::kYAMLNode for key '{}'", key); return GXF_FAILURE; } case ArgElementType::kIOSpec: { if constexpr (std::is_same_v<typeT, std::vector<holoscan::IOSpec*>>) { // Create vector of Handles YAML::Node yaml_node = YAML::Load("[]"); // Create an empty sequence for (auto& io_spec : value) { if (io_spec) { // Only consider non-null IOSpecs auto gxf_resource = std::dynamic_pointer_cast<GXFResource>(io_spec->resource()); yaml_node.push_back(gxf_resource->gxf_cname()); } } return GxfParameterSetFromYamlNode(context, uid, key, &yaml_node, ""); } HOLOSCAN_LOG_ERROR( "Unable to handle vector of std::vector<holoscan::IOSpec*>> for key: " "'{}'", key); break; } case ArgElementType::kResource: { if constexpr (std::is_same_v< typename holoscan::type_info<typeT>::element_type, std::shared_ptr<Resource>> && holoscan::type_info<typeT>::dimension == 1) { // Create vector of Handles YAML::Node yaml_node; for (auto& resource : value) { auto gxf_resource = std::dynamic_pointer_cast<GXFResource>(resource); // Push back the resource's gxf_cname only if it is not null. if (gxf_resource) { gxf_uid_t resource_cid = gxf_resource->gxf_cid(); std::string full_resource_name = gxf::get_full_component_name(context, resource_cid); yaml_node.push_back(full_resource_name.c_str()); } else { HOLOSCAN_LOG_TRACE( "Resource item in the vector is null. Skipping it for key '{}'", key); } } return GxfParameterSetFromYamlNode(context, uid, key, &yaml_node, ""); } HOLOSCAN_LOG_ERROR( "Unable to handle vector of ArgElementType::kResource for key '{}'", key); break; } case ArgElementType::kCondition: { if constexpr (std::is_same_v< typename holoscan::type_info<typeT>::element_type, std::shared_ptr<Condition>> && holoscan::type_info<typeT>::dimension == 1) { // Create vector of Handles YAML::Node yaml_node; for (auto& condition : value) { auto gxf_condition = std::dynamic_pointer_cast<GXFCondition>(condition); // Initialize GXF component if it is not already initialized. if (gxf_condition->gxf_context() == nullptr) { gxf_condition->gxf_eid(gxf::get_component_eid( context, uid)); // set Entity ID of the component gxf_condition->initialize(); } gxf_uid_t condition_cid = gxf_condition->gxf_cid(); std::string full_condition_name = gxf::get_full_component_name(context, condition_cid); yaml_node.push_back(full_condition_name.c_str()); } return GxfParameterSetFromYamlNode(context, uid, key, &yaml_node, ""); } HOLOSCAN_LOG_ERROR( "Unable to handle vector of ArgElementType::kCondition for key '{}'", key); break; } case ArgElementType::kCustom: { HOLOSCAN_LOG_ERROR( "Unable to handle vector of ArgElementType::kCustom type for key '{}'", key); return GXF_FAILURE; } } break; } case ArgContainerType::kArray: { HOLOSCAN_LOG_ERROR("Unable to handle ArgContainerType::kArray type for key '{}'", key); break; } } } HOLOSCAN_LOG_WARN( "Unable to get argument for key '{}' with type '{}'", key, typeid(typeT).name()); } catch (const std::bad_any_cast& e) { HOLOSCAN_LOG_ERROR("Bad any cast exception: {}", e.what()); } return GXF_FAILURE; }); } private: GXFParameterAdaptor() { add_param_handler<bool>(); add_param_handler<int8_t>(); add_param_handler<int16_t>(); add_param_handler<int32_t>(); add_param_handler<int64_t>(); add_param_handler<uint8_t>(); add_param_handler<uint16_t>(); add_param_handler<uint32_t>(); add_param_handler<uint64_t>(); add_param_handler<float>(); add_param_handler<double>(); add_param_handler<std::string>(); add_param_handler<std::vector<bool>>(); add_param_handler<std::vector<int8_t>>(); add_param_handler<std::vector<int16_t>>(); add_param_handler<std::vector<int32_t>>(); add_param_handler<std::vector<int64_t>>(); add_param_handler<std::vector<uint8_t>>(); add_param_handler<std::vector<uint16_t>>(); add_param_handler<std::vector<uint32_t>>(); add_param_handler<std::vector<uint64_t>>(); add_param_handler<std::vector<float>>(); add_param_handler<std::vector<double>>(); add_param_handler<std::vector<std::string>>(); add_param_handler<std::vector<std::vector<bool>>>(); add_param_handler<std::vector<std::vector<int8_t>>>(); add_param_handler<std::vector<std::vector<int16_t>>>(); add_param_handler<std::vector<std::vector<int32_t>>>(); add_param_handler<std::vector<std::vector<int64_t>>>(); add_param_handler<std::vector<std::vector<uint8_t>>>(); add_param_handler<std::vector<std::vector<uint16_t>>>(); add_param_handler<std::vector<std::vector<uint32_t>>>(); add_param_handler<std::vector<std::vector<uint64_t>>>(); add_param_handler<std::vector<std::vector<float>>>(); add_param_handler<std::vector<std::vector<double>>>(); add_param_handler<std::vector<std::vector<std::string>>>(); add_param_handler<holoscan::IOSpec*>(); add_param_handler<std::vector<holoscan::IOSpec*>>(); add_param_handler<std::shared_ptr<Resource>>(); add_param_handler<std::vector<std::shared_ptr<Resource>>>(); add_param_handler<std::shared_ptr<Condition>>(); add_param_handler<std::vector<std::shared_ptr<Condition>>>(); } std::unordered_map<std::type_index, AdaptFunc> function_map_; }; } // namespace holoscan::gxf #endif/* HOLOSCAN_CORE_EXECUTORS_GXF_GXF_PARAMETER_ADAPTOR_HPP */

© Copyright 2022, NVIDIA. Last updated on Jun 28, 2023.