Duration Filtering#
Filter audio samples by duration ranges, speech rate metrics, and temporal characteristics to create optimal datasets for ASR training and speech processing applications.
Duration-Based Quality Control#
Why Duration Matters#
Training Efficiency: Duration filtering can improve ASR training by removing samples that may be problematic for training
Processing Performance: Duration affects computational requirements:
Memory usage scales with audio length
Batch processing efficiency varies with duration variance
GPU utilization optimized for consistent lengths
Basic Duration Filtering#
Simple Duration Range#
from nemo_curator.stages.audio.common import GetAudioDurationStage, PreserveByValueStage
# Calculate duration for each audio file
duration_stage = GetAudioDurationStage(
audio_filepath_key="audio_filepath",
duration_key="duration"
)
# Filter for optimal duration range (1-15 seconds)
min_duration_filter = PreserveByValueStage(
input_value_key="duration",
target_value=1.0,
operator="ge" # greater than or equal
)
max_duration_filter = PreserveByValueStage(
input_value_key="duration",
target_value=15.0,
operator="le" # less than or equal
)
# Add to pipeline
pipeline.add_stage(duration_stage)
pipeline.add_stage(min_duration_filter)
pipeline.add_stage(max_duration_filter)
Use Case-Specific Ranges#
# Duration ranges for different applications
duration_configs = {
"asr_training": {
"min_duration": 1.0,
"max_duration": 20.0,
"optimal_range": (2.0, 10.0)
},
"voice_cloning": {
"min_duration": 3.0,
"max_duration": 10.0,
"optimal_range": (4.0, 8.0)
},
"speech_synthesis": {
"min_duration": 2.0,
"max_duration": 15.0,
"optimal_range": (3.0, 12.0)
},
"keyword_spotting": {
"min_duration": 0.5,
"max_duration": 3.0,
"optimal_range": (1.0, 2.0)
}
}
def create_use_case_duration_filter(use_case: str) -> list[PreserveByValueStage]:
"""Create duration filters for specific use case."""
config = duration_configs.get(use_case, duration_configs["asr_training"])
return [
PreserveByValueStage(
input_value_key="duration",
target_value=config["min_duration"],
operator="ge"
),
PreserveByValueStage(
input_value_key="duration",
target_value=config["max_duration"],
operator="le"
)
]
Speech Rate Analysis#
Calculate Speech Rate Metrics#
The built-in speech rate calculation functions can be used within custom processing stages to analyze speaking speed and add metrics to your pipeline data.
Speech Rate Filtering#
If you have pre-calculated speech rate metrics in your data, you can filter based on them:
from nemo_curator.stages.audio.common import PreserveByValueStage
from nemo_curator.pipeline import Pipeline
# Example: Filter by speech rate if you have word_rate field in your data
pipeline = Pipeline(name="speech_rate_filtering")
# Filter by speech rate (1.5-5 words per second)
pipeline.add_stage(
PreserveByValueStage(
input_value_key="word_rate", # Assumes this field exists in your data
target_value=1.5,
operator="ge"
)
)
pipeline.add_stage(
PreserveByValueStage(
input_value_key="word_rate",
target_value=5.0,
operator="le"
)
)
Note
This example assumes you have already calculated and stored speech rate metrics in your audio data. The built-in stages do not automatically calculate speech rates - you would need to create a custom stage for that functionality.
Speech Rate Filtering#
Normal Speech Rate Range#
from nemo_curator.stages.audio.common import PreserveByValueStage
# Filter by word rate (assumes word_rate field exists in your data)
word_rate_min_filter = PreserveByValueStage(
input_value_key="word_rate",
target_value=1.5,
operator="ge"
)
word_rate_max_filter = PreserveByValueStage(
input_value_key="word_rate",
target_value=5.0,
operator="le"
)
# Filter by character rate (assumes char_rate field exists in your data)
char_rate_min_filter = PreserveByValueStage(
input_value_key="char_rate",
target_value=8.0,
operator="ge"
)
char_rate_max_filter = PreserveByValueStage(
input_value_key="char_rate",
target_value=30.0,
operator="le"
)
Note
These examples assume you have pre-calculated speech rate metrics in your audio data. Use the get_wordrate()
and get_charrate()
utility functions to calculate these values in a custom processing stage.
Best Practices#
Duration Filtering Strategy#
Analyze First: Understand your dataset’s duration distribution
Use Case Alignment: Align duration ranges with intended use
Progressive Filtering: Apply duration filters before computationally expensive stages
Quality Correlation: Consider correlation between duration and other quality metrics
Common Pitfalls#
Over-Filtering: Removing too much data
# Check retention rates before applying filters
retention_rate = filtered_count / original_count
if retention_rate < 0.5: # Less than 50% retained
print("Warning: Very aggressive filtering - consider relaxing thresholds")
Under-Filtering: Keeping problematic samples that may negatively impact training or processing efficiency.
Real Working Example#
Here’s a complete working example from the NeMo Curator tutorials showing actual duration filtering in practice:
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.audio.common import GetAudioDurationStage, PreserveByValueStage
from nemo_curator.stages.audio.datasets.fleurs.create_initial_manifest import CreateInitialManifestFleursStage
from nemo_curator.stages.audio.inference.asr_nemo import InferenceAsrNemoStage
from nemo_curator.stages.audio.metrics.get_wer import GetPairwiseWerStage
from nemo_curator.stages.audio.io.convert import AudioToDocumentStage
from nemo_curator.stages.resources import Resources
def create_audio_pipeline(raw_data_dir: str, wer_threshold: float = 75.0) -> Pipeline:
"""Real working pipeline from NeMo Curator tutorials."""
pipeline = Pipeline(name="audio_inference", description="Inference audio and filter by WER threshold.")
# Load FLEURS dataset
pipeline.add_stage(
CreateInitialManifestFleursStage(
lang="hy_am",
split="dev",
raw_data_dir=raw_data_dir,
).with_(batch_size=4)
)
# ASR inference
pipeline.add_stage(
InferenceAsrNemoStage(
model_name="nvidia/stt_hy_fastconformer_hybrid_large_pc"
).with_(resources=Resources(gpus=1.0))
)
# Calculate WER
pipeline.add_stage(
GetPairwiseWerStage(
text_key="text",
pred_text_key="pred_text",
wer_key="wer"
)
)
# Calculate duration
pipeline.add_stage(
GetAudioDurationStage(
audio_filepath_key="audio_filepath",
duration_key="duration"
)
)
# Filter by WER threshold
pipeline.add_stage(
PreserveByValueStage(
input_value_key="wer",
target_value=wer_threshold,
operator="le"
)
)
# Convert to document format
pipeline.add_stage(AudioToDocumentStage().with_(batch_size=1))
return pipeline
Note
This example comes directly from tutorials/audio/fleurs/pipeline.py
and shows the correct parameter names and usage patterns for the built-in stages.