Distributed Data Classification#
NVIDIA NeMo Curator provides a module for performing distributed classification on large text datasets using GPU acceleration. This enables the categorization and filtering of text documents based on multiple dimensions such as domain, quality, safety, educational value, content type, and more. These classifications can enhance the quality of training data for large language models by identifying high-value content and removing problematic material.
How It Works#
The distributed data classification in NeMo Curator works by:
Parallel Processing: Chunking datasets across multiple computing nodes and GPUs to accelerate classification
Pre-trained Models: Using specialized models for different classification tasks
Batched Inference: Optimizing throughput with intelligent batching via CrossFit integration
Consistent API: Providing a unified interface through the
DistributedDataClassifier
base class
The DistributedDataClassifier
is designed to run on GPU clusters with minimal code changes regardless of which specific classifier you’re using. All classifiers support filtering based on classification results and storing prediction scores as metadata.
Usage#
NVIDIA NeMo Curator provides a base class DistributedDataClassifier
that can be extended to fit your specific model. The only requirement is that the model can fit on a single GPU. This module operates on the GPU, so the Dask cluster must be started as a GPU cluster, and DocumentDataset
requires backend="cudf"
.
Classifier Comparison#
Classifier |
Purpose |
Model Location |
Key Parameters |
Requirements |
---|---|---|---|---|
DomainClassifier |
Categorize English text by domain |
|
None |
|
MultilingualDomainClassifier |
Categorize text in 52 languages by domain |
|
None |
|
QualityClassifier |
Assess document quality |
|
None |
|
AegisClassifier |
Detect unsafe content |
|
HuggingFace token |
|
InstructionDataGuardClassifier |
Detect poisoning attacks |
|
HuggingFace token |
|
FineWebEduClassifier |
Score educational value |
|
None |
|
FineWebMixtralEduClassifier |
Score educational value (Mixtral annotations) |
|
None |
|
FineWebNemotronEduClassifier |
Score educational value (Nemotron annotations) |
|
None |
|
ContentTypeClassifier |
Categorize by speech type |
|
None |
|
PromptTaskComplexityClassifier |
Classify prompt tasks and complexity |
|
None |
Domain Classifier#
The Domain Classifier categorizes English text documents into specific domains or subject areas.
from nemo_curator.classifiers import DomainClassifier
from nemo_curator.datasets import DocumentDataset
# Load your dataset with cuDF backend
input_dataset = DocumentDataset.read_json("books_dataset/*.jsonl", backend="cudf")
# Apply the classifier, filtering for specific domains
domain_classifier = DomainClassifier(filter_by=["Games", "Sports"])
result_dataset = domain_classifier(dataset=input_dataset)
# Save the results
result_dataset.to_json("games_and_sports/")
Multilingual Domain Classifier#
Functionally similar to the Domain Classifier, but supports 52 languages.
from nemo_curator.classifiers import MultilingualDomainClassifier
input_dataset = DocumentDataset.read_json("multilingual_dataset/*.jsonl", backend="cudf")
classifier = MultilingualDomainClassifier(filter_by=["Games", "Sports"])
result_dataset = classifier(dataset=input_dataset)
Quality Classifier#
The Quality Classifier assesses document quality on a scale from Low to High.
from nemo_curator.classifiers import QualityClassifier
input_dataset = DocumentDataset.read_json("web_documents/*.jsonl", backend="cudf")
quality_classifier = QualityClassifier(filter_by=["High", "Medium"])
result_dataset = quality_classifier(dataset=input_dataset)
AEGIS Safety Model#
The AEGIS classifier detects unsafe content across 13 critical risk categories. It requires a HuggingFace token for access to Llama Guard.
from nemo_curator.classifiers import AegisClassifier
input_dataset = DocumentDataset.read_json("content/*.jsonl", backend="cudf")
token = "hf_1234" # Your HuggingFace user access token
safety_classifier = AegisClassifier(
aegis_variant="nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0",
token=token,
filter_by=["safe", "O13"] # Keep only safe content and "needs caution" category
)
result_dataset = safety_classifier(dataset=input_dataset)
The classifier adds a column with labels: “safe,” “O1” through “O13” (each representing specific safety risks), or “unknown.” For raw LLM output, use:
safety_classifier = AegisClassifier(
aegis_variant="nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0",
token=token,
keep_raw_pred=True,
raw_pred_column="raw_predictions"
)
Instruction Data Guard#
Detects LLM poisoning attacks in instruction-response datasets. Requires HuggingFace token access.
from nemo_curator.classifiers import InstructionDataGuardClassifier
# For instruction-response data: "Instruction: {instruction}. Input: {input_}. Response: {response}."
input_dataset = DocumentDataset.read_json("instruction_data/*.jsonl", backend="cudf")
token = "hf_1234" # Your HuggingFace user access token
classifier = InstructionDataGuardClassifier(token=token)
result_dataset = classifier(dataset=input_dataset)
The output includes two columns: a float score instruction_data_guard_poisoning_score
and a Boolean is_poisoned
.
FineWeb Educational Content Classifier#
Scores documents on educational value from 0–5. This helps prioritize content for knowledge-intensive tasks.
from nemo_curator.classifiers import FineWebEduClassifier
input_dataset = DocumentDataset.read_json("web_documents/*.jsonl", backend="cudf")
edu_classifier = FineWebEduClassifier(
batch_size=256,
pred_column="fineweb-edu-score", # Raw float scores
int_column="fineweb-edu-score-int" # Rounded integer scores
)
result_dataset = edu_classifier(dataset=input_dataset)
# Extract highly educational content (scores 4-5)
high_edu_dataset = result_dataset[result_dataset["fineweb-edu-score-int"] >= 4]
FineWeb Mixtral and Nemotron Edu Classifiers#
Similar to the FineWeb Edu Classifier but trained with different annotation sources:
FineWebMixtralEduClassifier: Uses annotations from Mixtral 8x22B-Instruct
FineWebNemotronEduClassifier: Uses annotations from Nemotron-4-340B-Instruct
Both provide a quality label column marking scores above 2.5 as “high_quality”:
from nemo_curator.classifiers import FineWebMixtralEduClassifier # or FineWebNemotronEduClassifier
classifier = FineWebMixtralEduClassifier(
pred_column="score", # Raw float scores
int_column="score-int", # Rounded integer scores
quality_label_column="quality-label" # "high_quality" or "low_quality"
)
result_dataset = classifier(dataset=input_dataset)
Content Type Classifier#
Categorizes documents into 11 distinct speech types.
from nemo_curator.classifiers import ContentTypeClassifier
input_dataset = DocumentDataset.read_json("content/*.jsonl", backend="cudf")
classifier = ContentTypeClassifier(filter_by=["Blogs", "News"])
result_dataset = classifier(dataset=input_dataset)
Prompt Task and Complexity Classifier#
Classifies prompts by task type and complexity dimensions.
from nemo_curator.classifiers import PromptTaskComplexityClassifier
input_dataset = DocumentDataset.read_json("prompts/*.jsonl", backend="cudf")
classifier = PromptTaskComplexityClassifier()
result_dataset = classifier(dataset=input_dataset)
CrossFit Integration#
CrossFit is an open-source library by RAPIDS AI for fast offline inference scaled to multi-node multi-GPU environments. It accelerates NVIDIA NeMo Curator’s classifiers with:
PyTorch integration for model inference
Efficient I/O and tokenization with cuDF
Smart batching/chunking for optimized processing
1.4x-4x performance improvement over Dask + PyTorch baselines
Sorted Sequence Data Loader#
The key feature of CrossFit used in NVIDIA NeMo Curator is the sorted sequence data loader, which optimizes throughput by:
Sorting input sequences by length
Grouping similar-length sequences into batches
Efficiently allocating batches to GPU memory based on estimated memory footprints
See the rapidsai/crossfit repository for more information.