Content Processing & Cleaning#
Clean, normalize, and transform text content to meet specific requirements for training language models using NeMo Curator’s tools and utilities.
Content processing involves transforming your text data while preserving essential information. This includes fixing encoding issues, removing sensitive information, and standardizing text format to ensure high-quality input for model training.
How it Works#
Content processing transformations typically modify documents in place or create new versions with specific changes. Most processing tools follow this pattern:
Load your dataset using
DocumentDataset
Configure and apply the appropriate processor
Save the transformed dataset for further processing
You can combine processing tools in sequence or use them alongside other curation steps like filtering and language management.
Available Processing Tools#
Identify and remove personal identifiable information from text
Fix Unicode issues, standardize spacing, and remove URLs
Usage#
Here’s an example of a typical content processing pipeline:
from nemo_curator import Sequential, Modify
from nemo_curator.datasets import DocumentDataset
from nemo_curator.modifiers import UnicodeReformatter, UrlRemover, NewlineNormalizer
from nemo_curator.modifiers.pii_modifier import PiiModifier
# Load your dataset
dataset = DocumentDataset.read_json("input_data/*.jsonl")
# Create a comprehensive cleaning pipeline
processing_pipeline = Sequential([
# Fix Unicode encoding issues
Modify(UnicodeReformatter()),
# Standardize newlines
Modify(NewlineNormalizer()),
# Remove URLs
Modify(UrlRemover()),
# Remove PII (optional)
Modify(PiiModifier(
language="en",
supported_entities=["PERSON", "EMAIL_ADDRESS", "PHONE_NUMBER"],
anonymize_action="redact"
))
])
# Apply the processing pipeline
cleaned_dataset = processing_pipeline(dataset)
# Save the processed dataset
cleaned_dataset.to_json("processed_output/", write_to_filename=True)
Common Processing Tasks#
Text Normalization#
Fix broken Unicode characters (mojibake)
Standardize whitespace and newlines
Remove or normalize special characters
Content Sanitization#
Remove personally identifiable information (PII)
Strip unwanted URLs or links
Remove boilerplate text or headers
Format Standardization#
Ensure consistent text encoding
Normalize punctuation and spacing
Standardize document structure