Save & Export Audio Data#
Export processed audio data and transcriptions in formats optimized for ASR model training, audio-and-text applications, and downstream analysis workflows.
Output Formats#
NeMo Curator’s audio curation pipeline supports several output formats tailored for different use cases:
JSONL Manifests#
The primary output format for audio curation is JSONL (JSON Lines):
{"audio_filepath": "/data/audio/sample_001.wav", "text": "hello world", "pred_text": "hello world", "wer": 0.0, "duration": 2.1}
{"audio_filepath": "/data/audio/sample_002.wav", "text": "good morning", "pred_text": "good morning", "wer": 0.0, "duration": 1.8}
Metadata Fields#
Standard fields included in audio manifests:
Field |
Type |
Description |
---|---|---|
|
string |
Absolute path to audio file |
|
string |
Ground truth transcription |
|
string |
ASR model prediction |
|
float |
Word Error Rate percentage |
|
float |
Audio duration in seconds |
|
string |
Language identifier (optional) |
Export Configuration#
from nemo_curator.stages.text.io.writer import JsonlWriter
from nemo_curator.stages.audio.io.convert import AudioToDocumentStage
# Convert AudioBatch to DocumentBatch for text writer
pipeline.add_stage(AudioToDocumentStage())
# Configure JSONL export
pipeline.add_stage(
JsonlWriter(
path="/output/audio_manifests",
write_kwargs={"force_ascii": False} # Support Unicode characters
)
)
Directory Structure#
Standard Output Layout#
When source_files
metadata exists, the writer generates deterministic hashed file names. Otherwise, it generates UUID-based names.
/output/audio_manifests/
├── <hash>.jsonl # Deterministic hash if metadata.source_files present, else UUID
├── <hash>.jsonl
└── ...
Quality Control#
Validation Checks#
Before export, check your processed data:
from nemo_curator.stages.audio.common import PreserveByValueStage
# Filter by quality thresholds
quality_filters = [
# Keep samples with WER <= 50%
PreserveByValueStage(
input_value_key="wer",
target_value=50.0,
operator="le"
),
# Keep samples with duration 1-30 seconds
PreserveByValueStage(
input_value_key="duration",
target_value=1.0,
operator="ge"
),
PreserveByValueStage(
input_value_key="duration",
target_value=30.0,
operator="le"
)
]
for filter_stage in quality_filters:
pipeline.add_stage(filter_stage)