NSFW Filter#
The NSFW (Not Safe For Work) Filter detects the likelihood that an image contains explicit or unsafe content. It outputs a probability score from 0 (safe) to 1 (NSFW), helping you filter or flag images in your datasets.
Model Details#
Architecture: MLP trained on CLIP ViT-L/14 image embeddings
Source: CLIP-based NSFW Detector
Output Field:
nsfw_score
Score Range: 0–1 (higher scores show NSFW content)
Embeddings: Requires CLIP ViT-L/14 (see Image Embedding)
How It Works#
The filter takes pre-computed normalized image embeddings from a previous pipeline stage and predicts the probability of NSFW content. The lightweight model processes batches of embeddings efficiently on the GPU.
Usage#
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.file_partitioning import FilePartitioningStage
from nemo_curator.stages.image.io.image_reader import ImageReaderStage
from nemo_curator.stages.image.embedders.clip_embedder import ImageEmbeddingStage
from nemo_curator.stages.image.filters.nsfw_filter import ImageNSFWFilterStage
# Create pipeline
pipeline = Pipeline(name="nsfw_filtering", description="Filter NSFW content from images")
# Stage 1: Partition tar files
pipeline.add_stage(FilePartitioningStage(
file_paths="/path/to/tar_dataset",
files_per_partition=1,
file_extensions=[".tar"],
))
# Stage 2: Read images
pipeline.add_stage(ImageReaderStage(
task_batch_size=100,
num_gpus_per_worker=0.25,
))
# Stage 3: Generate CLIP embeddings
pipeline.add_stage(ImageEmbeddingStage(
model_dir="/path/to/models",
model_inference_batch_size=32,
num_gpus_per_worker=0.25,
))
# Stage 4: Apply NSFW filtering
pipeline.add_stage(ImageNSFWFilterStage(
model_dir="/path/to/models",
score_threshold=0.5,
model_inference_batch_size=32,
num_gpus_per_worker=0.25,
))
# Run the pipeline (uses XennaExecutor by default)
results = pipeline.run()
Parameters#
Parameter |
Type |
Default |
Description |
---|---|---|---|
|
str |
None |
Path to directory containing model weights |
|
float |
0.5 |
NSFW score threshold for filtering (filters out images above this value) |
|
int |
32 |
Batch size for model inference |
|
float |
0.25 |
GPU allocation per worker (0.25 = 1/4 GPU) |
|
bool |
False |
Enable verbose logging for debugging |
Performance Notes#
The small model processes pre-computed embeddings efficiently on the GPU.
Increase batch size for faster throughput if memory allows.
Best Practices#
Use CLIP ViT-L/14 embeddings generated by
ImageEmbeddingStage
for best results.Run the NSFW filter after embedding generation in the same pipeline to avoid extra I/O.
The filter requires pre-computed embeddings and cannot extract embeddings from raw images.
Review a sample of scores to calibrate thresholds for your use case.
Adjust
model_inference_batch_size
based on available GPU memory.