Video Clipping#
Split long videos into shorter clips for downstream processing.
How it Works#
NeMo Curator provides two clipping stages: Fixed Stride and TransNetV2 scene-change detection.
Use Fixed Stride to create uniform segments.
Use TransNetV2 to cut at visual shot boundaries.
Before You Start#
Ensure inputs contain video bytes and basic metadata. The clipping stages require video.source_bytes to be present and metadata with framerate and num_frames.
Quickstart#
Use either the pipeline stages or the example script flags to create clips.
from nemo_curator.pipeline import Pipeline
from nemo_curator.stages.video.clipping.clip_extraction_stages import (
FixedStrideExtractorStage,
)
from nemo_curator.stages.video.clipping.video_frame_extraction import (
VideoFrameExtractionStage,
)
from nemo_curator.stages.video.clipping.transnetv2_extraction import (
TransNetV2ClipExtractionStage,
)
pipe = Pipeline(name="clipping_examples")
# Fixed Stride
pipe.add_stage(
FixedStrideExtractorStage(
clip_len_s=10.0,
clip_stride_s=10.0,
min_clip_length_s=2.0,
limit_clips=0,
)
)
# TransNetV2 (requires full-video frame extraction first)
pipe.add_stage(VideoFrameExtractionStage(decoder_mode="pynvc", verbose=True))
pipe.add_stage(
TransNetV2ClipExtractionStage(
model_dir="/models",
threshold=0.4,
min_length_s=2.0,
max_length_s=10.0,
max_length_mode="stride",
crop_s=0.5,
gpu_memory_gb=10,
limit_clips=-1,
verbose=True,
)
)
pipe.run()
# Fixed stride
python -m nemo_curator.examples.video.video_split_clip_example \
... \
--splitting-algorithm fixed_stride \
--fixed-stride-split-duration 10.0 \
--fixed-stride-min-clip-length-s 2.0 \
--limit-clips 0
# TransNetV2
python -m nemo_curator.examples.video.video_split_clip_example \
... \
--splitting-algorithm transnetv2 \
--transnetv2-frame-decoder-mode pynvc \
--transnetv2-threshold 0.4 \
--transnetv2-min-length-s 2.0 \
--transnetv2-max-length-s 10.0 \
--transnetv2-max-length-mode stride \
--transnetv2-crop-s 0.5 \
--transnetv2-gpu-memory-gb 10 \
--limit-clips 0
Clipping Options#
Fixed Stride#
The FixedStrideExtractorStage steps through the video duration by clip_stride_s, creating spans of length clip_len_s (it truncates the final span at the video end when needed). It filters spans shorter than min_clip_length_s and appends Clip objects identified by source and frame indices.
from nemo_curator.stages.video.clipping.clip_extraction_stages import FixedStrideExtractorStage
stage = FixedStrideExtractorStage(
clip_len_s=10.0,
clip_stride_s=10.0,
min_clip_length_s=2.0,
limit_clips=0,
)
Tip
If limit_clips > 0 and the Video already has clips, the stage skips processing. It does not cap the number of clips generated within the same run.
TransNetV2 Scene-Change Detection#
TransNetV2 is a shot-boundary detection model that identifies transitions between shots. The stage converts those transitions into scenes, applies length/crop rules, and emits clips aligned to scene boundaries.
Using extracted frames of size 27×48×3, the model predicts shot transitions, converts them into scenes, and applies filtering: min_length_s, max_length_s with max_length_mode (“truncate” or “stride”), and optional crop_s at both ends. It creates Clip objects for the resulting spans, then stops after it reaches limit_clips (> 0), and releases frames from memory after processing.
Run
VideoFrameExtractionStagefirst to populatevideo.frame_array.from nemo_curator.stages.video.clipping.video_frame_extraction import VideoFrameExtractionStage from nemo_curator.stages.video.clipping.transnetv2_extraction import TransNetV2ClipExtractionStage frame_extractor = VideoFrameExtractionStage( decoder_mode="pynvc", # or "ffmpeg_gpu", "ffmpeg_cpu" verbose=True, )
Important
Frames must be
(27, 48, 3)per frame; the stage accepts arrays shaped(num_frames, 27, 48, 3)and transposes from(48, 27, 3)automatically.Configure TransNetV2 and run the stage in your pipeline to generate clips from the detected scenes.
transnet = TransNetV2ClipExtractionStage( model_dir="/models", threshold=0.4, min_length_s=2.0, max_length_s=10.0, max_length_mode="stride", # or "truncate" crop_s=0.5, gpu_memory_gb=10, limit_clips=-1, verbose=True, )