bridge.recipes.deepseek.deepseek_v3#

Module Contents#

Functions#

model_config

Configure the DeepSeek-V3 (671B) model.

pretrain_config

Create a pre-training configuration for DeepSeek-V3 (671B) model.

pretrain_config_32nodes

Create a pre-training configuration for DeepSeek-V3 (671B) model with minimal number of nodes (32).

Data#

API#

bridge.recipes.deepseek.deepseek_v3.logger#

‘getLogger(…)’

bridge.recipes.deepseek.deepseek_v3.model_config(
tensor_parallelism: int = 2,
pipeline_parallelism: int = 16,
pipeline_parallelism_dtype: Optional[torch.dtype] = None,
virtual_pipeline_parallelism: Optional[int] = None,
context_parallelism: int = 1,
expert_parallelism: int = 64,
sequence_parallelism: bool = True,
mtp_num_layers: Optional[int] = 1,
mtp_loss_scaling_factor: Optional[float] = 0.1,
recompute_granularity: str = 'selective',
recompute_modules: Optional[List[str]] = None,
recompute_method: Optional[str] = None,
recompute_num_layers: Optional[int] = None,
enable_deepep: bool = False,
apply_rope_fusion: bool = True,
layout: Optional[List[List[str]]] = None,
) megatron.bridge.models.deepseek.DeepSeekV3ModelProvider#

Configure the DeepSeek-V3 (671B) model.

Parameters:
  • tensor_parallelism – Degree of tensor model parallelism.

  • pipeline_parallelism – Degree of pipeline model parallelism.

  • pipeline_parallelism_dtype – Data type for pipeline parallelism.

  • virtual_pipeline_parallelism – Size of virtual pipeline parallelism.

  • context_parallelism – Degree of context parallelism.

  • expert_parallelism – Degree of expert model parallelism.

  • sequence_parallelism – Whether to use sequence parallelism.

  • mtp_num_layers – Number of MTP layers.

  • mtp_loss_scaling_factor – Loss scaling factor for MTP.

  • recompute_granularity – Recomputation granularity. For V3 we recommend “selective”.

  • recompute_modules – Modules to selectively recompute when granularity is “selective”.

  • recompute_method – Method for activation recomputation.

  • recompute_num_layers – Number of layers to recompute.

  • apply_rope_fusion – Whether to apply MLA Yarn fusion.

Returns:

Configuration for the DeepSeek-V3 model.

Return type:

DeepSeekV3ModelProvider

bridge.recipes.deepseek.deepseek_v3.pretrain_config(
dir: Optional[str] = None,
name: str = 'default',
data_paths: Optional[List[str]] = None,
data_args_path: Optional[str] = None,
train_data_path: Optional[List[str]] = None,
valid_data_path: Optional[List[str]] = None,
test_data_path: Optional[List[str]] = None,
per_split_data_args_path: Optional[str] = None,
mock: bool = False,
tensor_parallelism: int = 2,
pipeline_parallelism: int = 16,
pipeline_parallelism_dtype: Optional[torch.dtype] = torch.bfloat16,
virtual_pipeline_parallelism: Optional[int] = None,
context_parallelism: int = 1,
expert_parallelism: int = 64,
sequence_parallelism: bool = True,
use_megatron_fsdp: bool = False,
mtp_num_layers: Optional[int] = 1,
mtp_loss_scaling_factor: Optional[float] = 0.1,
train_iters: int = 1000000,
global_batch_size: int = 4096,
micro_batch_size: int = 1,
seq_length: int = 4096,
lr: float = 0.0003,
min_lr: float = 3e-05,
lr_warmup_iters: int = 2000,
lr_decay_iters: Optional[int] = None,
precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = None,
comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig] = None,
enable_deepep: bool = False,
recompute_granularity: str = 'selective',
recompute_modules: Optional[List[str]] = None,
recompute_method: Optional[str] = None,
recompute_num_layers: Optional[int] = None,
apply_rope_fusion: bool = False,
layout: Optional[List[List[str]]] = None,
) megatron.bridge.training.config.ConfigContainer#

Create a pre-training configuration for DeepSeek-V3 (671B) model.

Returns:

Configuration for pre-training.

Return type:

ConfigContainer

bridge.recipes.deepseek.deepseek_v3.pretrain_config_32nodes(**kwargs)#

Create a pre-training configuration for DeepSeek-V3 (671B) model with minimal number of nodes (32).

Returns:

Configuration for pre-training.

Return type:

ConfigContainer