bridge.models.config#

Module Contents#

Classes#

ConfigProtocol

Protocol defining the configuration interface for model providers.

Functions#

from_hf_pretrained

Load a pretrained model configuration from a directory or file.

save_hf_pretrained

Save the model configuration to a directory.

_to_dict

Convert an object to a dictionary representation.

_convert_value_to_dict

Recursively convert a value to a dictionary representation.

_contains_code_references

Check if a configuration dictionary contains code references.

Data#

API#

bridge.models.config.T#

‘TypeVar(…)’

bridge.models.config.ConfigFormat#

None

class bridge.models.config.ConfigProtocol#

Bases: typing.Protocol

Protocol defining the configuration interface for model providers.

classmethod from_hf_pretrained(
pretrained_model_name_or_path: Union[str, pathlib.Path],
trust_remote_code: bool = False,
mode: megatron.bridge.utils.instantiate_utils.InstantiationMode = InstantiationMode.LENIENT,
**kwargs,
) bridge.models.config.T#

Load a pretrained model configuration from a directory or file.

save_hf_pretrained(
save_directory: Union[str, pathlib.Path],
config_format: bridge.models.config.ConfigFormat | None = None,
config_name: Optional[str] = None,
**kwargs,
) None#

Save the model configuration to a directory.

bridge.models.config.from_hf_pretrained(
cls: Type[bridge.models.config.T],
pretrained_model_name_or_path: Union[str, pathlib.Path],
trust_remote_code: bool = False,
mode: megatron.bridge.utils.instantiate_utils.InstantiationMode = InstantiationMode.LENIENT,
config_name: str = 'config',
**kwargs,
) bridge.models.config.T#

Load a pretrained model configuration from a directory or file.

Parameters:
  • cls – The class to instantiate

  • pretrained_model_name_or_path – Path to a directory containing a config file, or direct path to a config file (yaml/json/toml)

  • trust_remote_code – Whether to trust and execute code references (classes/functions) found in the configuration. Required to be True if the config contains any class or function references. Default: False

  • mode – Instantiation mode (STRICT or LENIENT) for the instantiate function

  • config_name – Base name of the config file (without extension)

  • **kwargs – Additional keyword arguments to override loaded configuration

Returns:

Instance of the class with loaded configuration

.. rubric:: Example

# Load from directory (looks for config.yaml, config.json, or config.toml)
model = from_hf_pretrained(MyModel, "./saved_model/")

# Load from specific file
model = from_hf_pretrained(MyModel, "./saved_model/config.yaml")

# With code references
model = from_pretrained(MyModel, "./saved_model/", trust_remote_code=True)

# Override configuration values
model = from_pretrained(MyModel, "./saved_model/", temperature=0.8)
bridge.models.config.save_hf_pretrained(
obj: Any,
save_directory: Union[str, pathlib.Path],
config_format: bridge.models.config.ConfigFormat = 'json',
config_name: str = 'config',
**kwargs,
) None#

Save the model configuration to a directory.

Parameters:
  • obj – The object to save

  • save_directory – Directory where to save the configuration

  • config_format – Format to save in (“yaml”, “json”, or “toml”). Default: “json”

  • config_name – Name for the config file (without extension)

  • **kwargs – Additional metadata to save alongside the configuration

.. rubric:: Example

# Save as JSON (default)
save_hf_pretrained(model, "./saved_model/")

# Save as YAML
save_hf_pretrained(model, "./saved_model/", config_format="yaml")

# Save with custom name
save_hf_pretrained(model, "./saved_model/", config_name="my_config")
bridge.models.config._to_dict(obj: Any) Dict[str, Any]#

Convert an object to a dictionary representation.

Parameters:

obj – The object to convert

Returns:

Dictionary representation of the object

bridge.models.config._convert_value_to_dict(value: Any) Any#

Recursively convert a value to a dictionary representation.

Parameters:

value – The value to convert

Returns:

The converted value

bridge.models.config._contains_code_references(
config_dict: Dict[str, Any],
) bool#

Check if a configuration dictionary contains code references.

Parameters:

config_dict – The configuration dictionary to check

Returns:

True if code references are found, False otherwise