bridge.recipes.qwen_vl.qwen25_vl#

Module Contents#

Classes#

Qwen25VLCommonKwargs

Typed options accepted by Qwen2.5-VL recipe helper functions.

Functions#

qwen25_vl_3b_finetune_config

Return a fine-tuning config for Qwen2.5-VL 3B Instruct.

qwen25_vl_7b_finetune_config

Return a fine-tuning config for Qwen2.5-VL 7B Instruct.

qwen25_vl_32b_finetune_config

Return a fine-tuning config for Qwen2.5-VL 32B Instruct.

qwen25_vl_72b_finetune_config

Return a fine-tuning config for Qwen2.5-VL 72B Instruct.

_qwen25_vl_common

Create a fine-tuning configuration for Qwen2.5-VL models using a given HuggingFace path.

API#

class bridge.recipes.qwen_vl.qwen25_vl.Qwen25VLCommonKwargs#

Bases: typing_extensions.TypedDict

Typed options accepted by Qwen2.5-VL recipe helper functions.

Initialization

Initialize self. See help(type(self)) for accurate signature.

hf_path: str#

None

dir: Optional[str]#

None

name: str#

None

train_data_path: Optional[List[str]]#

None

valid_data_path: Optional[List[str]]#

None

test_data_path: Optional[List[str]]#

None

dataset_type: Optional[str]#

None

image_folder: Optional[str]#

None

tokenizer_model: Optional[str]#

None

tensor_parallelism: int#

None

pipeline_parallelism: int#

None

pipeline_parallelism_dtype: Optional[torch.dtype]#

None

virtual_pipeline_parallelism: Optional[int]#

None

context_parallelism: int#

None

sequence_parallelism: bool#

None

use_megatron_fsdp: bool#

None

train_iters: int#

None

global_batch_size: int#

None

micro_batch_size: int#

None

seq_length: int#

None

lr: float#

None

min_lr: float#

None

lr_warmup_iters: int#

None

lr_decay_iters: Optional[int]#

None

eval_interval: int#

None

save_interval: int#

None

precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#

None

comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig]#

None

freeze_language_model: bool#

None

freeze_vision_model: bool#

None

freeze_vision_projection: bool#

None

pretrained_checkpoint: Optional[str]#

None

bridge.recipes.qwen_vl.qwen25_vl.qwen25_vl_3b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen_vl.qwen25_vl.Qwen25VLCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Qwen2.5-VL 3B Instruct.

See _qwen25_vl_common for the full list of parameters.

bridge.recipes.qwen_vl.qwen25_vl.qwen25_vl_7b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen_vl.qwen25_vl.Qwen25VLCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Qwen2.5-VL 7B Instruct.

See _qwen25_vl_common for the full list of parameters.

bridge.recipes.qwen_vl.qwen25_vl.qwen25_vl_32b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen_vl.qwen25_vl.Qwen25VLCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Qwen2.5-VL 32B Instruct.

See _qwen25_vl_common for the full list of parameters.

bridge.recipes.qwen_vl.qwen25_vl.qwen25_vl_72b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen_vl.qwen25_vl.Qwen25VLCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Qwen2.5-VL 72B Instruct.

See _qwen25_vl_common for the full list of parameters.

bridge.recipes.qwen_vl.qwen25_vl._qwen25_vl_common(
hf_path: str,
dir: Optional[str] = None,
name: str = 'qwen25_vl_finetune',
pretrained_checkpoint: Optional[str] = None,
train_data_path: Optional[List[str]] = None,
valid_data_path: Optional[List[str]] = None,
test_data_path: Optional[List[str]] = None,
dataset_type: Optional[str] = None,
image_folder: Optional[str] = None,
tokenizer_model: Optional[str] = None,
tensor_parallelism: int = 2,
pipeline_parallelism: int = 1,
pipeline_parallelism_dtype: Optional[torch.dtype] = None,
virtual_pipeline_parallelism: Optional[int] = None,
context_parallelism: int = 1,
sequence_parallelism: bool = False,
use_megatron_fsdp: bool = False,
train_iters: int = 300000,
global_batch_size: int = 32,
micro_batch_size: int = 2,
seq_length: int = 4096,
lr: float = 0.0003,
min_lr: float = 3e-05,
lr_warmup_iters: int = 500,
lr_decay_iters: Optional[int] = None,
eval_interval: int = 500,
save_interval: int = 500,
precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = 'bf16_mixed',
comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig] = None,
freeze_language_model: bool = False,
freeze_vision_model: bool = False,
freeze_vision_projection: bool = False,
) megatron.bridge.training.config.ConfigContainer#

Create a fine-tuning configuration for Qwen2.5-VL models using a given HuggingFace path.

The dataset pipeline is conversation-based. To train multimodal tokens, ensure your preprocessed data includes placeholders (e.g., ) as needed.