12.5. Clara AI Brain Tumor Segmentation Pipeline

The Brain Tumor Segmentation pipeline is one of the reference pipelines provided with Clara Deploy SDK. The pipeline uses a pre-trained model for volumetric (3D) brain tumor segmentation (only tumor core (TC) from T1c images).

This pipeline depends on the Clara Deploy DICOM Adapter to receive DICOM images, specifically single channel 3D MRIs (T1c). Once the DICOM instances are stored, the pipeline is started to first convert the DICOM instances to a volume image in MetaIO format and then process the input volume image with the Brain Tumor Segmentation AI model. The AI model generates the labeled tumor cores within the brain as a binary mask on slices of the volume at the same size as the input. The brain tumor core is labeled as 1, and the background is labeled as 0.

In its final steps, the pipeline outputs the binary mask as a new DICOM series using the original study instance UID; also, it outputs the original and segmented volumes to the Clara Deploy Render Server for visualization on the Clara Dashboard.

The Brain Tumor Segmentation pipeline is defined in the Clara Deploy pipeline definition language. This pipeline utilizes built-in reference containers to construct the following set of operators:

  • The dicom-reader operator converts input DICOM data into volume images in MHD format.

  • The brain-tumor-segmentation operator performs AI inference against the NVIDIA Triton Inference server to generate brain- and tumor-segmentation volume images.

  • The dicom-writer converts the segmented volume image into DICOM instances, each with a new series instance UID and the original DICOM-study instance UID.

  • The register-dicom-output operator registers the DICOM instances with the Clara Deploy DICOM Adapter, which in turn stores each instance on external DICOM devices per the configuration.

  • The register-volume-images-for-rendering operator registers original and segmented volume images with the Clara Deploy Render Server for visualization.

The following are details of the pipeline definition, with comments describing how each operator functions, as well as their input and output.


api-version: 0.4.0 name: brain-tumor-pipeline operators: # dicom reader operator # Input: '/input' mapped directly to the input of the pipeline, which is populated by the DICOM Adaptor. # Output:'/output' for saving converted volume image in MHD format to file whose name # is the same as the DICOM series instance ID. - name: dicom-reader description: Converts DICOM instances into MHD, one file per DICOM series. container: image: clara/dicom-reader tag: latest input: - path: /input output: - path: /output # brain-tumor-segmentation operator # Input: `/input` containing volume image data, MHD format, with a single volume. # Output: `/output` containing segmented volume image, MHD format. # `/publish` containing original and segmented volume images, MHD format, # along with rendering configuration file. - name: brain-tumor-segmentation description: Segmentation of brain tumor core inferencing using DL trained model. container: image: clara/ai-braintumor tag: latest requests: memory: 8192 input: - from: dicom-reader path: /input output: - path: /output name: segmentation - path: /publish name: rendering models: # change the following line to match the name created for the model - name: segmentation_mri_brain_tumors_br16_t1c2tc_v1 # dicom writer operator # Input1: `/input` containing a volume image file, in MHD format, name matching the DICOM series instance UID. # Input2: `/dicom` containing original DICOM instances, i.e. dcm file. # Output: `/output` containing the DICOM instances converted from the volume image, with updated attributes # based on original DICOM instances. - name: dicom-writer description: Converts MHD into DICOM instance with attributes based on the original instances. container: image: clara/dicom-writer tag: latest input: - from: brain-tumor-segmentation name: segmentation path: /input - path: /dicom output: - path: /output name: dicom # register-volume-images-for-rendering operator # Input: Published original and segmented volume images, MHD format, along with rendering configuration file # from brain-tumor-segmentation operator. # Output: N/A. Input data will be sent to the destination, namely `renderserver` for Render Server DataSet Service. - name: register-volume-images-for-rendering description: Register volume images, MHD format, for rendering. container: image: clara/register-results tag: latest command: ["python", "register.py", "--agent", "renderserver"] input: - from: brain-tumor-segmentation name: rendering path: /input # register-dicom-output operator # Input: `/input` containing DICOM instances in the named output, `dicom` from dicom-writer operator. # Output: N/A. Input data will be sent to the destinations, namely DICOM devices, by the Clara DICOM SCU agent. - name: register-dicom-output description: Register converted DICOM instances with Results Service to be sent to external DICOM devices. container: image: clara/register-results tag: latest command: ["python", "register.py", "--agent", "ClaraSCU", "--data", "[\"MYPACS\"]"] input: - from: dicom-writer name: dicom path: /input

Please refer to the How to Run a Reference Pipeline section to learn how to register a pipeline, configure the DICOM Adapter, and execute the pipeline.

© Copyright 2018-2020, NVIDIA Corporation. All rights reserved.. Last updated on Feb 1, 2023.