Post-training with Cosmos-NeMo-Assets#

This section provides instructions for post-training Predict2 Text2Image models with the Cosmos-NeMo-Assets dataset.

Set up the Text2Image Model#

  1. Ensure you have the necessary hardware and software, as outlined on the Prerequisites page.

  2. Follow the Installation guide to download the Cosmos-Predict2 repo and set up the environment.

  3. Generate a Hugging Face access token. Set the access token permission to ‘Read’ (the default permission is ‘Fine-grained’).

  4. Log in to Hugging Face with the access token:

    huggingface-cli login
    
  5. Review and accept the Llama-Guard-3-8B terms.

  6. Download the model weights for Cosmos-Predict2-2B-Text2Image and Cosmos-Predict2-14B-Text2Image from Hugging Face:

    python -m scripts.download_checkpoints --model_types text2image --model_sizes 2B 14B
    

    Tip

    Change the --model_sizes parameter as needed if you only need one of the 2B/14B models.

Preparing the Dataset#

Downloading Cosmos-NeMo-Assets#

The first step is downloading a dataset with videos.

You must provide a folder containing a collection of videos in MP4 format, preferably 720p. These videos should focus on the subject throughout the entire video so that each video chunk contains the subject.

You can use nvidia/Cosmos-NeMo-Assets for post-training.

mkdir -p datasets/cosmos_nemo_assets/

# This command will download the videos for physical AI
huggingface-cli download nvidia/Cosmos-NeMo-Assets --repo-type dataset --local-dir datasets/cosmos_nemo_assets/ --include "*.mp4*"

mv datasets/cosmos_nemo_assets/nemo_diffusion_example_data datasets/cosmos_nemo_assets/videos

Dataset folder format:

datasets/cosmos_nemo_assets/
├── videos/
│   ├── *.mp4

Preprocess the Data#

Cosmos-NeMo-Assets comes with a single caption for 4 long videos. In this example, we extract video frames and save as jpg files to prepare a dataset for text2image training.

python scripts/extract_images_from_videos.py --input_dataset_dir datasets/cosmos_nemo_assets --output_dataset_dir datasets/cosmos_nemo_assets_images --stride 30

Run the following command to pre-compute T5-XXL embeddings for the video caption used for post-training:

# The script will use the provided prompt, save the T5-XXL embeddings in pickle format.
python scripts/get_t5_embeddings_from_cosmos_nemo_assets.py --dataset_path datasets/cosmos_nemo_assets_images --prompt "An image of sks teal robot." --is_image

Dataset folder format:

datasets/cosmos_nemo_assets_images/
├── metas/
│   ├── *.txt
├── images/
│   ├── *.jpg
├── t5_xxl/
│   ├── *.pickle

Post-train the Text2Image Model#

Cosmos-Predict2-2B-Text2Image#

Run the following command to execute an example post-training job with cosmos_nemo_assets_images data.

EXP=predict2_text2image_training_2b_cosmos_nemo_assets
torchrun --nproc_per_node=1 --master_port=12341 -m scripts.train --config=cosmos_predict2/configs/base/config.py -- experiment=${EXP}

The model will be post-trained using the cosmos_nemo_assets dataset. See the config predict2_text2image_training_2b_cosmos_nemo_assets defined in cosmos_predict2/configs/base/experiment/cosmos_nemo_assets.py to understand how the dataloader is defined.

# Cosmos-NeMo-Assets text2image example
example_image_dataset_cosmos_nemo_assets_images = L(ImageDataset)(
    dataset_dir="datasets/cosmos_nemo_assets_images",
    image_size=(704, 1280),
)

dataloader_train_cosmos_nemo_assets_images = L(DataLoader)(
    dataset=example_image_dataset_cosmos_nemo_assets_images,
    sampler=L(get_sampler)(dataset=example_image_dataset_cosmos_nemo_assets_images),
    batch_size=1,
    drop_last=True,
    num_workers=8,
    pin_memory=True,
)

The checkpoints will be saved to checkpoints/PROJECT/GROUP/NAME. In the above example, PROJECT is posttraining, GROUP is text2image, NAME is 2b_cosmos_nemo_assets.

See the job config to understand how they are determined.

predict2_text2image_training_2b_cosmos_nemo_assets = dict(
    dict(
        ...
        job=dict(
            project="posttraining",
            group="text2image",
            name="2b_cosmos_nemo_assets",
        ),
        ...
    )
)

The checkpoints will be saved in the below structure.

checkpoints/posttraining/text2image/2b_cosmos_nemo_assets/checkpoints/
├── model/
│   ├── iter_{NUMBER}.pt
├── optim/
├── scheduler/
├── trainer/
├── latest_checkpoint.txt

Cosmos-Predict2-14B-Text2Image#

Run the following command to execute an example post-training job with cosmos_nemo_assets_images data with 8 GPUs.

EXP=predict2_text2image_training_14b_cosmos_nemo_assets
torchrun --nproc_per_node=8 -m scripts.train --config=cosmos_predict2/configs/base/config.py -- experiment=${EXP}

The above command will train the entire model. If you are interested in training with LoRA, attach model.config.train_architecture=lora to the training command.

The checkpoints will be saved in the below structure.

checkpoints/posttraining/text2image/14b_cosmos_nemo_assets/checkpoints/
├── model/
│   ├── iter_{NUMBER}.pt
├── optim/
├── scheduler/
├── trainer/
├── latest_checkpoint.txt

Run Inference on Post-Trained Checkpoints#

Cosmos-Predict2-2B-Text2Image#

For example, if a posttrained checkpoint with 1000 iterations is to be used, run the following command. Use --dit_path argument to specify the path to the post-trained checkpoint.

python examples/text2image.py \
  --model_size 2B \
  --dit_path "checkpoints/posttraining/text2image/2b_cosmos_nemo_assets/checkpoints/model/iter_000001000.pt" \
  --prompt "An image of sks teal robot." \
  --save_path output/generated_image_2b_teal_robot.jpg

To load EMA weights from the post-trained checkpoint, add argument --load_ema.

python examples/text2image.py \
  --model_size 2B \
  --dit_path "checkpoints/posttraining/text2image/2b_cosmos_nemo_assets/checkpoints/model/iter_000001000.pt" \
  --prompt "An image of sks teal robot." \
  --load_ema \
  --save_path output/generated_image_2b_teal_robot_ema.jpg

Refer to the Text2Image Model Reference for inference run details.

Cosmos-Predict2-14B-Text2Image#

The 14B model can be run similarly by changing the --model_size and --dit_path arguments.