Post-training with a Custom Dataset#

This section provides instructions for post-training Predict2 Text2Image models with a custom dataset. These models can transform a still image or video clip into a longer, animated sequence guided by the text description.

Set up the Text2Image Model#

  1. Ensure you have the necessary hardware and software, as outlined on the Prerequisites page.

  2. Follow the Installation guide to download the Cosmos-Predict2 repo and set up the environment.

  3. Generate a Hugging Face access token. Set the access token permission to ‘Read’ (the default permission is ‘Fine-grained’).

  4. Log in to Hugging Face with the access token:

    huggingface-cli login
    
  5. Review and accept the Llama-Guard-3-8B terms.

  6. Download the model weights for Cosmos-Predict2-2B-Text2Image and Cosmos-Predict2-14B-Text2Image from Hugging Face:

    python -m scripts.download_checkpoints --model_types text2image --model_sizes 2B 14B
    

    Tip

    Change the --model_sizes parameter as needed if you only need one of the 2B/14B models.

Preparing the Dataset#

The post-training data is expected to contain paired prompt and video files. For example, a custom dataset can be saved in a following structure.

Dataset folder format:

datasets/custom_text2image_dataset/
├── metas/
│   ├── *.txt
├── images/
│   ├── *.jpg

The metas folder contains .txt files containing prompts describing the video content, while the videow folder contains the corresponding .mp4 video files.

After preparing metas and images folders, run the following command to pre-compute T5-XXL embeddings.

python -m scripts.get_t5_embeddings --dataset_path datasets/custom_text2image_dataset/

This script will create t5_xxl folder under the dataset root where the T5-XXL embeddings are saved as .pickle files.

datasets/custom_text2image_dataset/
├── metas/
│   ├── *.txt
├── images/
│   ├── *.jpg
├── t5_xxl/
│   ├── *.pickle

Create Configs for Training#

Define the dataloader from the prepared dataset.

For example,

# custom dataset example
example_image_dataset = L(Dataset)(
    dataset_dir="datasets/custom_text2image_dataset",
    image_size=(768, 1360),  # 1024 resolution, 16:9 aspect ratio
)

dataloader_image_train = L(DataLoader)(
    dataset=example_image_dataset,
    sampler=L(get_sampler)(dataset=example_image_dataset),
    batch_size=1,
    drop_last=True,
    num_workers=8,
    pin_memory=True,
)

With the dataloader_image_train, create a config for a training job. Here’s a post-training example for text2image 2B model.

predict2_text2image_training_2b_custom_data = dict(
    defaults=[
        {"override /model": "predict2_text2image_fsdp_2b"},
        {"override /optimizer": "fusedadamw"},
        {"override /scheduler": "lambdalinear"},
        {"override /ckpt_type": "standard"},
        {"override /dataloader_val": "mock_image"},
        "_self_",
    ],
    job=dict(
        project="posttraining",
        group="text2image",
        name="2b_custom_data",
    ),
    model=dict(
        config=dict(
            pipe_config=dict(
                ema=dict(enabled=True),     # enable EMA during training
                guardrail_config=dict(enabled=False),   # disable guardrail during training
            ),
        )
    ),
    model_parallel=dict(
        context_parallel_size=1,            # context parallelism size
    ),
    dataloader_train=dataloader_image_train,
    trainer=dict(
        distributed_parallelism="fsdp",
        callbacks=dict(
            iter_speed=dict(hit_thres=10),
        ),
        max_iter=1000,                      # maximum number of iterations
    ),
    checkpoint=dict(
        save_iter=500,                      # checkpoints will be saved every 500 iterations.
    ),
    optimizer=dict(
        lr=2 ** (-14.5),
        weight_decay=0.2,
    ),
    scheduler=dict(
        warm_up_steps=[0],
        cycle_lengths=[1_000],              # adjust considering max_iter
        f_max=[0.4],
        f_min=[0.0],
    ),
)

The config should be registered to ConfigStore.

for _item in [
    # 2b, custom data
    predict2_text2image_training_2b_custom_data,
]:
    # Get the experiment name from the global variable.
    experiment_name = [name.lower() for name, value in globals().items() if value is _item][0]

    cs.store(
        group="experiment",
        package="_global_",
        name=experiment_name,
        node=_item,
    )

Configure the System#

In the above config example, it starts by overriding from the registered configs.

    {"override /model": "predict2_text2image_fsdp_2b"},
    {"override /optimizer": "fusedadamw"},
    {"override /scheduler": "lambdalinear"},
    {"override /ckpt_type": "standard"},
    {"override /dataloader_val": "mock_image"},

The configuration system is organized as follows:

cosmos_predict2/configs/base/
├── config.py                   # Main configuration class definition
├── defaults/                   # Default configuration groups   ├── callbacks.py            # Training callbacks configurations   ├── checkpoint.py           # Checkpoint saving/loading configurations   ├── data.py                 # Dataset and dataloader configurations   ├── ema.py                  # Exponential Moving Average configurations   ├── model.py                # Model architecture configurations   ├── optimizer.py            # Optimizer configurations   └── scheduler.py            # Learning rate scheduler configurations
└── experiment/                 # Experiment-specific configurations
    ├── cosmos_nemo_assets.py   # Experiments with cosmos_nemo_assets
    └── utils.py                # Utility functions for experiments

The system provides several pre-defined configuration groups that can be mixed and matched:

Model Configurations (defaults/model.py)#

  • predict2_text2image_fsdp_2b: 2B parameter Text2Image model with FSDP

  • predict2_text2image_fsdp_14b: 14B parameter Text2Image model with FSDP

Optimizer Configurations (defaults/optimizer.py)#

  • fusedadamw: FusedAdamW optimizer with standard settings

  • Custom optimizer configurations for different training scenarios

Scheduler Configurations (defaults/scheduler.py)#

  • constant: Constant learning rate

  • lambdalinear: Linearly warming-up learning rate

  • Various learning rate scheduling strategies

Data Configurations (defaults/data.py)#

  • Training and validation dataset configurations

Checkpoint Configurations (defaults/checkpoint.py)#

  • standard: Standard local checkpoint handling

Callback Configurations (defaults/callbacks.py)#

  • basic: Essential training callbacks

  • Performance monitoring and logging callbacks

In addition to the overrided values, the rest of the config setup overwrites or addes the other config details.

Run a Training Job#

Run the following command to execute an example post-training job with the custom data.

EXP=predict2_text2image_training_2b_custom_data
torchrun --nproc_per_node=8 --master_port=12341 -m scripts.train --config=cosmos_predict2/configs/base/config.py -- experiment=${EXP}

The above command will train the entire model. If you are interested in training with LoRA, attach model.config.train_architecture=lora to the training command.

The checkpoints will be saved to checkpoints/PROJECT/GROUP/NAME. In the above example, PROJECT is posttraining, GROUP is text2image, NAME is 2b_custom_data.

checkpoints/posttraining/text2image/2b_custom_data/checkpoints/
├── model/
│   ├── iter_{NUMBER}.pt
├── optim/
├── scheduler/
├── trainer/
├── latest_checkpoint.txt

Run Inference on Post-Trained Checkpoints#

Cosmos-Predict2-2B-Text2Image#

For example, if a posttrained checkpoint with 1000 iterations is to be used, run the following command. Use --dit_path argument to specify the path to the post-trained checkpoint.

python examples/text2image.py \
  --model_size 2B \
  --dit_path "checkpoints/posttraining/text2image/2b_custom_data/checkpoints/model/iter_000001000.pt" \
  --prompt "A descriptive prompt for physical AI." \
  --save_path output/cosmos_nemo_assets/generated_image_from_post-training.mp4

To load EMA weights from the post-trained checkpoint, add argument --load_ema.

python examples/text2image.py \
  --model_size 2B \
  --dit_path "checkpoints/posttraining/text2image/2b_custom_data/checkpoints/model/iter_000001000.pt" \
  --load_ema \
  --prompt "A descriptive prompt for physical AI." \
  --save_path output/cosmos_nemo_assets/generated_image_from_post-training.mp4

Refer to the Text2Image Model Reference for inference run details.

Cosmos-Predict2-14B-Text2Image#

The 14B model can be run similarly by changing the --model_size and --dit_path arguments.