Computing Matrix Product State (MPS) Amplitudes¶
The following code example illustrates how to define a tensor network state, factorize it as a Matrix Product State (MPS), and then compute a slice of amplitudes of the factorized MPS state. The full code can be found in the NVIDIA/cuQuantum repository (here).
Headers and error handling¶
7#include <cstdlib>
8#include <cstdio>
9#include <cassert>
10#include <complex>
11#include <vector>
12#include <bitset>
13#include <iostream>
14
15#include <cuda_runtime.h>
16#include <cutensornet.h>
17
18
19#define HANDLE_CUDA_ERROR(x) \
20{ const auto err = x; \
21 if( err != cudaSuccess ) \
22 { printf("CUDA error %s in line %d\n", cudaGetErrorString(err), __LINE__); fflush(stdout); std::abort(); } \
23};
24
25#define HANDLE_CUTN_ERROR(x) \
26{ const auto err = x; \
27 if( err != CUTENSORNET_STATUS_SUCCESS ) \
28 { printf("cuTensorNet error %s in line %d\n", cutensornetGetErrorString(err), __LINE__); fflush(stdout); std::abort(); } \
29};
30
31
32int main()
33{
34 static_assert(sizeof(size_t) == sizeof(int64_t), "Please build this sample on a 64-bit architecture!");
35
36 constexpr std::size_t fp64size = sizeof(double);
Define the tensor network state and the desired slice of state amplitudes¶
Let’s define a tensor network state corresponding to a 6-qubit quantum circuit and request a slice of state amplitudes where qubits 0 and 1 are fixed at value 1.
40 // Quantum state configuration
41 constexpr int32_t numQubits = 6; // number of qubits
42 const std::vector<int64_t> qubitDims(numQubits,2); // qubit dimensions
43 const std::vector<int32_t> fixedModes({0,1}); // fixed modes in the output amplitude tensor (must be in acsending order)
44 const std::vector<int64_t> fixedValues({1,1}); // values of the fixed modes in the output amplitude tensor
45 const int32_t numFixedModes = fixedModes.size(); // number of fixed modes in the output amplitude tensor
46 std::cout << "Quantum circuit: " << numQubits << " qubits\n";
Initialize the cuTensorNet library handle¶
50 // Initialize the cuTensorNet library
51 HANDLE_CUDA_ERROR(cudaSetDevice(0));
52 cutensornetHandle_t cutnHandle;
53 HANDLE_CUTN_ERROR(cutensornetCreate(&cutnHandle));
54 std::cout << "Initialized cuTensorNet library on GPU 0\n";
Define quantum gates on GPU¶
58 // Define necessary quantum gate tensors in Host memory
59 const double invsq2 = 1.0 / std::sqrt(2.0);
60 // Hadamard gate
61 const std::vector<std::complex<double>> h_gateH {{invsq2, 0.0}, {invsq2, 0.0},
62 {invsq2, 0.0}, {-invsq2, 0.0}};
63 // CX gate
64 const std::vector<std::complex<double>> h_gateCX {{1.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0},
65 {0.0, 0.0}, {1.0, 0.0}, {0.0, 0.0}, {0.0, 0.0},
66 {0.0, 0.0}, {0.0, 0.0}, {0.0, 0.0}, {1.0, 0.0},
67 {0.0, 0.0}, {0.0, 0.0}, {1.0, 0.0}, {0.0, 0.0}};
68
69 // Copy quantum gates to Device memory
70 void *d_gateH{nullptr}, *d_gateCX{nullptr};
71 HANDLE_CUDA_ERROR(cudaMalloc(&d_gateH, 4 * (2 * fp64size)));
72 HANDLE_CUDA_ERROR(cudaMalloc(&d_gateCX, 16 * (2 * fp64size)));
73 std::cout << "Allocated quantum gate memory on GPU\n";
74 HANDLE_CUDA_ERROR(cudaMemcpy(d_gateH, h_gateH.data(), 4 * (2 * fp64size), cudaMemcpyHostToDevice));
75 HANDLE_CUDA_ERROR(cudaMemcpy(d_gateCX, h_gateCX.data(), 16 * (2 * fp64size), cudaMemcpyHostToDevice));
76 std::cout << "Copied quantum gates to GPU memory\n";
Allocate MPS tensors¶
Here we set the shapes of MPS tensors and allocate GPU memory for their storage.
80 // Determine the MPS representation and allocate buffers for the MPS tensors
81 const int64_t maxExtent = 2; // GHZ state can be exactly represented with max bond dimension of 2
82 std::vector<std::vector<int64_t>> extents;
83 std::vector<int64_t*> extentsPtr(numQubits);
84 std::vector<void*> d_mpsTensors(numQubits, nullptr);
85 for (int32_t i = 0; i < numQubits; i++) {
86 if (i == 0) { // left boundary MPS tensor
87 extents.push_back({2, maxExtent});
88 HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * 2 * fp64size));
89 }
90 else if (i == numQubits-1) { // right boundary MPS tensor
91 extents.push_back({maxExtent, 2});
92 HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * 2 * fp64size));
93 }
94 else { // middle MPS tensors
95 extents.push_back({maxExtent, 2, maxExtent});
96 HANDLE_CUDA_ERROR(cudaMalloc(&d_mpsTensors[i], 2 * maxExtent * maxExtent * 2 * fp64size));
97 }
98 extentsPtr[i] = extents[i].data();
99 }
Allocate the amplitudes slice tensor on GPU¶
Here we allocate GPU memory for the requested amplitudes slice tensor.
103 // Allocate Device memory for the specified slice of the quantum circuit amplitudes tensor
104 void *d_amp{nullptr};
105 std::size_t ampSize = 1;
106 for(const auto & qubitDim: qubitDims) ampSize *= qubitDim; // all state modes (full size)
107 for(const auto & fixedMode: fixedModes) ampSize /= qubitDims[fixedMode]; // fixed state modes reduce the slice size
108 HANDLE_CUDA_ERROR(cudaMalloc(&d_amp, ampSize * (2 * fp64size)));
109 std::cout << "Allocated memory for the specified slice of the quantum circuit amplitude tensor of size "
110 << ampSize << " elements\n";
Allocate the scratch buffer on GPU¶
114 // Query the free memory on Device
115 std::size_t freeSize{0}, totalSize{0};
116 HANDLE_CUDA_ERROR(cudaMemGetInfo(&freeSize, &totalSize));
117 const std::size_t scratchSize = (freeSize - (freeSize % 4096)) / 2; // use half of available memory with alignment
118 void *d_scratch{nullptr};
119 HANDLE_CUDA_ERROR(cudaMalloc(&d_scratch, scratchSize));
120 std::cout << "Allocated " << scratchSize << " bytes of scratch memory on GPU\n";
Create a pure tensor network state¶
Now let’s create a pure tensor network state for a 6-qubit quantum circuit.
124 // Create the initial quantum state
125 cutensornetState_t quantumState;
126 HANDLE_CUTN_ERROR(cutensornetCreateState(cutnHandle, CUTENSORNET_STATE_PURITY_PURE, numQubits, qubitDims.data(),
127 CUDA_C_64F, &quantumState));
128 std::cout << "Created the initial quantum state\n";
Apply quantum gates¶
Let’s construct the GHZ quantum circuit by applying the corresponding quantum gates.
132 // Construct the final quantum circuit state (apply quantum gates) for the GHZ circuit
133 int64_t id;
134 HANDLE_CUTN_ERROR(cutensornetStateApplyTensorOperator(cutnHandle, quantumState, 1, std::vector<int32_t>{{0}}.data(),
135 d_gateH, nullptr, 1, 0, 1, &id));
136 for(int32_t i = 1; i < numQubits; ++i) {
137 HANDLE_CUTN_ERROR(cutensornetStateApplyTensorOperator(cutnHandle, quantumState, 2, std::vector<int32_t>{{i-1,i}}.data(),
138 d_gateCX, nullptr, 1, 0, 1, &id));
139 }
140 std::cout << "Applied quantum gates\n";
Request MPS factorization for the final quantum circuit state¶
Here we express our intent to factorize the final quantum circuit state using MPS factorization. The provided shapes of the MPS tensors refer to their maximal size limit during the MPS renormalization procedure. The actually computed shapes of the final MPS tensors may be smaller. No computation is done here yet.
144 // Specify the final target MPS representation (use default fortran strides)
145 HANDLE_CUTN_ERROR(cutensornetStateFinalizeMPS(cutnHandle, quantumState,
146 CUTENSORNET_BOUNDARY_CONDITION_OPEN, extentsPtr.data(), /*strides=*/nullptr));
147 std::cout << "Requested the final MPS factorization of the quantum circuit state\n";
Configure MPS factorization procedure¶
After expressing our intent to perform MPS factorization of the final
quantum circuit state, we can also configure the MPS factorization
procedure by resetting different options, for example, the SVD algorithm.
Starting with cuTensorNet v2.7.0, the MPS gauge option can now be enabled.
By setting it to CUTENSORNET_STATE_MPS_GAUGE_SIMPLE
, the simple update algorithm
is utilized to enhance the accuracy of the MPS factorization.
151 // Optional, set up the SVD method for MPS truncation.
152 cutensornetTensorSVDAlgo_t algo = CUTENSORNET_TENSOR_SVD_ALGO_GESVDJ;
153 HANDLE_CUTN_ERROR(cutensornetStateConfigure(cutnHandle, quantumState,
154 CUTENSORNET_STATE_CONFIG_MPS_SVD_ALGO, &algo, sizeof(algo)));
155 // Set up simple update gauge option for MPS simulation, this is optional but recommended
156 cutensornetStateMPSGaugeOption_t gauge_option = CUTENSORNET_STATE_MPS_GAUGE_SIMPLE;
157 HANDLE_CUTN_ERROR(cutensornetStateConfigure(cutnHandle, quantumState,
158 CUTENSORNET_STATE_CONFIG_MPS_GAUGE_OPTION, &gauge_option, sizeof(gauge_option)));
159 std::cout << "Configured the MPS factorization computation\n";
Prepare the computation of MPS factorization¶
Let’s create a workspace descriptor and prepare the computation of MPS factorization.
163 // Prepare the MPS computation and attach workspace
164 cutensornetWorkspaceDescriptor_t workDesc;
165 HANDLE_CUTN_ERROR(cutensornetCreateWorkspaceDescriptor(cutnHandle, &workDesc));
166 std::cout << "Created the workspace descriptor\n";
167 HANDLE_CUTN_ERROR(cutensornetStatePrepare(cutnHandle, quantumState, scratchSize, workDesc, 0x0));
168 std::cout << "Prepared the computation of the quantum circuit state\n";
169 double flops {0.0};
170 HANDLE_CUTN_ERROR(cutensornetStateGetInfo(cutnHandle, quantumState,
171 CUTENSORNET_STATE_INFO_FLOPS, &flops, sizeof(flops)));
172 if(flops > 0.0) {
173 std::cout << "Total flop count = " << (flops/1e9) << " GFlop\n";
174 }else if(flops < 0.0) {
175 std::cout << "ERROR: Negative Flop count!\n";
176 std::abort();
177 }
178
179 int64_t worksize {0};
180 HANDLE_CUTN_ERROR(cutensornetWorkspaceGetMemorySize(cutnHandle,
181 workDesc,
182 CUTENSORNET_WORKSIZE_PREF_RECOMMENDED,
183 CUTENSORNET_MEMSPACE_DEVICE,
184 CUTENSORNET_WORKSPACE_SCRATCH,
185 &worksize));
186 std::cout << "Scratch GPU workspace size (bytes) for MPS computation = " << worksize << std::endl;
187 if(worksize <= scratchSize) {
188 HANDLE_CUTN_ERROR(cutensornetWorkspaceSetMemory(cutnHandle, workDesc, CUTENSORNET_MEMSPACE_DEVICE,
189 CUTENSORNET_WORKSPACE_SCRATCH, d_scratch, worksize));
190 }else{
191 std::cout << "ERROR: Insufficient workspace size on Device!\n";
192 std::abort();
193 }
194 std::cout << "Set the workspace buffer for the MPS factorization computation\n";
Compute MPS factorization¶
Once the MPS factorization procedure has been configured and prepared, let’s compute the MPS factorization of the final quantum circuit state.
198 // Execute MPS computation
199 HANDLE_CUTN_ERROR(cutensornetStateCompute(cutnHandle, quantumState,
200 workDesc, extentsPtr.data(), /*strides=*/nullptr, d_mpsTensors.data(), 0));
201 std::cout << "Computed the MPS factorization\n";
Create the state amplitudes accessor¶
Once the factorized MPS representation of the final quantum circuit state has been computed, let’s create the amplitudes accessor object that will compute the requested slice of state amplitudes.
205 // Specify the quantum circuit amplitudes accessor
206 cutensornetStateAccessor_t accessor;
207 HANDLE_CUTN_ERROR(cutensornetCreateAccessor(cutnHandle, quantumState, numFixedModes, fixedModes.data(),
208 nullptr, &accessor)); // using default strides
209 std::cout << "Created the specified quantum circuit amplitudes accessor\n";
Configure the state amplitudes accessor¶
Now we can configure the state amplitudes accessor object by setting the number of hyper-samples to be used by the tensor network contraction path finder.
213 // Configure the computation of the slice of the specified quantum circuit amplitudes tensor
214 const int32_t numHyperSamples = 8; // desired number of hyper samples used in the tensor network contraction path finder
215 HANDLE_CUTN_ERROR(cutensornetAccessorConfigure(cutnHandle, accessor,
216 CUTENSORNET_ACCESSOR_CONFIG_NUM_HYPER_SAMPLES, &numHyperSamples, sizeof(numHyperSamples)));
Prepare the computation of the amplitudes slice tensor¶
Let’s prepare the computation of the amplitudes slice tensor.
220 // Prepare the computation of the specified slice of the quantum circuit amplitudes tensor
221 HANDLE_CUTN_ERROR(cutensornetAccessorPrepare(cutnHandle, accessor, scratchSize, workDesc, 0x0));
222 std::cout << "Prepared the computation of the specified slice of the quantum circuit amplitudes tensor\n";
223 flops = 0.0;
224 HANDLE_CUTN_ERROR(cutensornetAccessorGetInfo(cutnHandle, accessor,
225 CUTENSORNET_ACCESSOR_INFO_FLOPS, &flops, sizeof(flops)));
226 std::cout << "Total flop count = " << (flops/1e9) << " GFlop\n";
227 if(flops <= 0.0) {
228 std::cout << "ERROR: Invalid Flop count!\n";
229 std::abort();
230 }
Set up the workspace¶
Now we can set up the required workspace buffer.
234 // Attach the workspace buffer
235 HANDLE_CUTN_ERROR(cutensornetWorkspaceGetMemorySize(cutnHandle,
236 workDesc,
237 CUTENSORNET_WORKSIZE_PREF_RECOMMENDED,
238 CUTENSORNET_MEMSPACE_DEVICE,
239 CUTENSORNET_WORKSPACE_SCRATCH,
240 &worksize));
241 std::cout << "Required scratch GPU workspace size (bytes) = " << worksize << std::endl;
242 if(worksize <= scratchSize) {
243 HANDLE_CUTN_ERROR(cutensornetWorkspaceSetMemory(cutnHandle, workDesc, CUTENSORNET_MEMSPACE_DEVICE,
244 CUTENSORNET_WORKSPACE_SCRATCH, d_scratch, worksize));
245 }else{
246 std::cout << "ERROR: Insufficient workspace size on Device!\n";
247 std::abort();
248 }
249 std::cout << "Set the workspace buffer\n";
Compute the specified slice of state amplitudes¶
Once everything has been set up, we compute the requested slice of state amplitudes, copy it back to Host memory, and print it.
253 // Compute the specified slice of the quantum circuit amplitudes tensor
254 std::complex<double> stateNorm2{0.0,0.0};
255 HANDLE_CUTN_ERROR(cutensornetAccessorCompute(cutnHandle, accessor, fixedValues.data(),
256 workDesc, d_amp, static_cast<void*>(&stateNorm2), 0x0));
257 std::cout << "Computed the specified slice of the quantum circuit amplitudes tensor\n";
258 std::vector<std::complex<double>> h_amp(ampSize);
259 HANDLE_CUDA_ERROR(cudaMemcpy(h_amp.data(), d_amp, ampSize * (2 * fp64size), cudaMemcpyDeviceToHost));
260 std::cout << "Amplitudes slice for " << (numQubits - numFixedModes) << " qubits:\n";
261 for(std::size_t i = 0; i < ampSize; ++i) {
262 std::cout << " " << h_amp[i] << std::endl;
263 }
264 std::cout << "Squared 2-norm of the state = (" << stateNorm2.real() << ", " << stateNorm2.imag() << ")\n";
Free resources¶
268 // Destroy the workspace descriptor
269 HANDLE_CUTN_ERROR(cutensornetDestroyWorkspaceDescriptor(workDesc));
270 std::cout << "Destroyed the workspace descriptor\n";
271
272 // Destroy the quantum circuit amplitudes accessor
273 HANDLE_CUTN_ERROR(cutensornetDestroyAccessor(accessor));
274 std::cout << "Destroyed the quantum circuit amplitudes accessor\n";
275
276 // Destroy the quantum circuit state
277 HANDLE_CUTN_ERROR(cutensornetDestroyState(quantumState));
278 std::cout << "Destroyed the quantum circuit state\n";
279
280 for (int32_t i = 0; i < numQubits; i++) {
281 HANDLE_CUDA_ERROR(cudaFree(d_mpsTensors[i]));
282 }
283 HANDLE_CUDA_ERROR(cudaFree(d_scratch));
284 HANDLE_CUDA_ERROR(cudaFree(d_amp));
285 HANDLE_CUDA_ERROR(cudaFree(d_gateCX));
286 HANDLE_CUDA_ERROR(cudaFree(d_gateH));
287 std::cout << "Freed memory on GPU\n";
288
289 // Finalize the cuTensorNet library
290 HANDLE_CUTN_ERROR(cutensornetDestroy(cutnHandle));
291 std::cout << "Finalized the cuTensorNet library\n";
292
293 return 0;
294}