Class OnnxInfer
Defined in File core.hpp
Base Type
public holoscan::inference::InferBase
(Class InferBase)
-
class OnnxInfer : public holoscan::inference::InferBase
Onnxruntime based inference class
Public Functions
-
OnnxInfer(const std::string &model_file_path, bool enable_fp16, int32_t dla_core, bool dla_gpu_fallback, bool cuda_flag, bool cuda_buf_in, bool cuda_buf_out)
Constructor.
- Parameters
model_file_path – Path to onnx model file
enable_fp16 – Flag showing if trt engine file conversion will use FP16.
dla_core – The DLA core index to execute the engine on, starts at 0. Set to -1 to disable DLA.
dla_gpu_fallback – If DLA is enabled, use the GPU if a layer cannot be executed on DLA. If the fallback is disabled, engine creation will fail if a layer cannot executed on DLA.
cuda_flag – Flag to show if inference will happen using CUDA
cuda_buf_in – Flag to demonstrate if input data buffer is on cuda
cuda_buf_out – Flag to demonstrate if output data buffer will be on cuda
-
~OnnxInfer()
Destructor.
Does the Core inference using Onnxruntime. Input and output buffer are supported on Host. Inference is supported on host and device. The provided CUDA data event is used to prepare the input data any execution of CUDA work should be in sync with this event. If the inference is using CUDA it should record a CUDA event and pass it back in
cuda_event_inference
.- Parameters
input_data – Input DataBuffer
output_buffer – Output DataBuffer, is populated with inferred results
- Returns
InferStatus
-
void populate_model_details()
Populate class parameters with model details and values.
-
void print_model_details()
Print model details.
-
int set_holoscan_inf_onnx_session_options()
Create session options for inference.
-
virtual std::vector<std::vector<int64_t>> get_input_dims() const
Get input data dimensions to the model.
- Returns
Vector of input dimensions. Each dimension is a vector of int64_t corresponding to the shape of the input tensor.
-
virtual std::vector<std::vector<int64_t>> get_output_dims() const
Get output data dimensions from the model.
- Returns
Vector of input dimensions. Each dimension is a vector of int64_t corresponding to the shape of the input tensor.
-
virtual std::vector<holoinfer_datatype> get_input_datatype() const
Get input data types from the model.
- Returns
Vector of values as datatype per input tensor
-
virtual std::vector<holoinfer_datatype> get_output_datatype() const
Get output data types from the model.
- Returns
Vector of values as datatype per output tensor
-
virtual void cleanup()
-
OnnxInfer(const std::string &model_file_path, bool enable_fp16, int32_t dla_core, bool dla_gpu_fallback, bool cuda_flag, bool cuda_buf_in, bool cuda_buf_out)