nvidia.dali.fn.random.beta#
- nvidia.dali.fn.random.beta(__shape_like=None, /, *, alpha=1.0, beta=1.0, bytes_per_sample_hint=[0], dtype=None, preserve=False, seed=-1, shape=None, device=None, name=None)#
Generates a random number from
[0, 1]
range following the beta distribution.The beta distribution has the following probabilty distribution function:
\[f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}\]where
Г
is the gamma function defined as:\[\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} \, dx\]The operator supports
float32
andfloat64
output types.The shape of the generated data can be either specified explicitly with a
shape
argument, or chosen to match the shape of the__shape_like
input, if provided. If none are present, a single value per sample is generated.- Supported backends
‘cpu’
- Parameters:
__shape_like (TensorList, optional) – Shape of this input will be used to infer the shape of the output, if provided.
- Keyword Arguments:
alpha (float or TensorList of float, optional, default = 1.0) – The alpha parameter, a positive
float32
scalar.beta (float or TensorList of float, optional, default = 1.0) – The beta parameter, a positive
float32
scalar.bytes_per_sample_hint (int or list of int, optional, default = [0]) –
Output size hint, in bytes per sample.
If specified, the operator’s outputs residing in GPU or page-locked host memory will be preallocated to accommodate a batch of samples of this size.
dtype (
nvidia.dali.types.DALIDataType
, optional) –Output data type.
Note
The generated numbers are converted to the output data type, rounding and clamping if necessary.
preserve (bool, optional, default = False) – Prevents the operator from being removed from the graph even if its outputs are not used.
seed (int, optional, default = -1) –
Random seed.
If not provided, it will be populated based on the global seed of the pipeline.
shape (int or list of int or TensorList of int, optional) – Shape of the output data.