Stable Diffusion Model Configuration Options#
The example python based backend
/backend/diffusion/model.py
supports
the following configuration parameters to customize the model being served.
Full Configuration Examples#
Batch Size and Dynamic Batching#
You can select the batch size and dynamic batching queue delay. With batch size 1 dynamic batching is disabled.
[!Note] Changing the batch size requires rebuilding the TensorRT Engines
max_batch_size: 1
dynamic_batching {
max_queue_delay_microseconds: 100000
}
Engine Building Parameters#
The following configuration parameters affect the engine build.
Please see the TensorRT demo for more information.
{
key: "onnx_opset"
value: {
string_value: "18"
}
},
{
key: "image_height"
value: {
string_value: "512"
}
},
{
key: "image_width"
value: {
string_value: "512"
}
},
{
key: "version"
value: {
string_value: "1.5"
}
}
Forcing Engine Build#
Setting the following parameter to a non empty value will force an engine rebuild.
{
key: "force_engine_build"
value: {
string_value: ""
}
}
Runtime Settings#
The following configuration parameters affect the runtime behavior of the model. Please see the TensorRT demo for more information.
Setting a non null integer value for seed
will result in
deterministic results.
{
key: "steps"
value: {
string_value: "50"
}
},
{
key: "scheduler"
value: {
string_value: ""
}
},
{
key: "guidance_scale"
value: {
string_value: "7.5"
}
},
{
key: "seed"
value: {
string_value: ""
}
}