nemo_rl.models.megatron.config#
Module Contents#
Classes#
Runtime configuration for model training and inference. |
|
Container for model and optimizer state. |
API#
- class nemo_rl.models.megatron.config.MegatronGenerationConfig#
Bases:
typing.TypedDict- buffer_size_gb: int#
None
- buffer_guaranteed_fraction: float#
None
- num_cuda_graphs: int#
None
- block_size_tokens: int#
None
- use_cuda_graphs_for_non_decode_steps: bool#
None
- enable_chunked_prefill: bool#
None
- unified_memory_level: int#
None
- max_tokens: int#
None
- class nemo_rl.models.megatron.config.RuntimeConfig#
Bases:
typing.NamedTupleRuntime configuration for model training and inference.
This contains all validated runtime settings needed for model initialization, parallelization, and training.
- megatron_cfg: megatron.bridge.training.config.ConfigContainer#
None
- model_cfg: Any#
None
- dtype: torch.dtype#
None
- optimizer_cpu_offload: bool#
None
- offload_optimizer_for_logprob: bool#
None
- is_generation_colocated: Optional[bool]#
None
- final_padded_vocab_size: int#
None
- class nemo_rl.models.megatron.config.ModelAndOptimizerState#
Bases:
typing.NamedTupleContainer for model and optimizer state.
This named tuple holds all model-related state including the model itself, optimizer, scheduler, and metadata about the model type and configuration.
- state: megatron.bridge.training.state.GlobalState#
None
- model: megatron.core.transformer.MegatronModule#
None
- optimizer: megatron.core.optimizer.MegatronOptimizer#
None
- scheduler: megatron.core.optimizer_param_scheduler.OptimizerParamScheduler#
None
- checkpointing_context: dict[str, Any]#
None
- param_sync_func: Optional[Callable]#
None