Program Listing for File fragment.hpp
↰ Return to documentation for file (include/holoscan/core/fragment.hpp
)
/*
* SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef HOLOSCAN_CORE_FRAGMENT_HPP
#define HOLOSCAN_CORE_FRAGMENT_HPP
#include <future> // for std::future
#include <iostream> // for std::cout
#include <memory> // for std::shared_ptr
#include <set> // for std::set
#include <string> // for std::string
#include <type_traits> // for std::enable_if_t, std::is_constructible
#include <unordered_map>
#include <unordered_set>
#include <tuple>
#include <utility> // for std::pair
#include "common.hpp"
#include "config.hpp"
#include "dataflow_tracker.hpp"
#include "executor.hpp"
#include "graph.hpp"
#include "network_context.hpp"
#include "scheduler.hpp"
namespace holoscan {
// key = operator name, value = (input port names, output port names, multi-receiver names)
using FragmentPortMap =
std::unordered_map<std::string,
std::tuple<std::unordered_set<std::string>, std::unordered_set<std::string>,
std::unordered_set<std::string>>>;
// Data structure containing port information for multiple fragments. Fragments are composed by
// the workers and port information is sent back to the driver for addition to this map.
// The keys are the fragment names.
using MultipleFragmentsPortMap = std::unordered_map<std::string, FragmentPortMap>;
class Fragment {
public:
Fragment() = default;
virtual ~Fragment() = default;
Fragment(Fragment&&) = default;
Fragment& operator=(Fragment&&) = default;
Fragment& name(const std::string& name) &;
Fragment&& name(const std::string& name) &&;
const std::string& name() const;
Fragment& application(Application* app);
Application* application() const;
void config(const std::string& config_file, const std::string& prefix = "");
void config(std::shared_ptr<Config>& config);
Config& config();
OperatorGraph& graph();
Executor& executor();
std::shared_ptr<Scheduler> scheduler();
// /**
// * @brief Set the scheduler used by the executor
// *
// * @param scheduler The scheduler to be added.
// */
void scheduler(const std::shared_ptr<Scheduler>& scheduler);
std::shared_ptr<NetworkContext> network_context();
// /**
// * @brief Set the network context used by the executor
// *
// * @param network_context The network context to be added.
// */
void network_context(const std::shared_ptr<NetworkContext>& network_context);
ArgList from_config(const std::string& key);
std::unordered_set<std::string> config_keys();
template <typename OperatorT, typename StringT, typename... ArgsT,
typename = std::enable_if_t<std::is_constructible_v<std::string, StringT>>>
std::shared_ptr<OperatorT> make_operator(const StringT& name, ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating operator '{}'", name);
auto op = std::make_shared<OperatorT>(std::forward<ArgsT>(args)...);
op->name(name);
op->fragment(this);
auto spec = std::make_shared<OperatorSpec>(this);
op->setup(*spec.get());
op->spec(spec);
// We used to initialize operator here, but now it is initialized in initialize_fragment
// function after a graph of a fragment has been composed.
return op;
}
template <typename OperatorT, typename... ArgsT>
std::shared_ptr<OperatorT> make_operator(ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating operator");
auto op = make_operator<OperatorT>("noname_operator", std::forward<ArgsT>(args)...);
return op;
}
template <typename ResourceT, typename StringT, typename... ArgsT,
typename = std::enable_if_t<std::is_constructible_v<std::string, StringT>>>
std::shared_ptr<ResourceT> make_resource(const StringT& name, ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating resource '{}'", name);
auto resource = std::make_shared<ResourceT>(std::forward<ArgsT>(args)...);
resource->name(name);
resource->fragment(this);
auto spec = std::make_shared<ComponentSpec>(this);
resource->setup(*spec.get());
resource->spec(spec);
// Skip initialization. `resource->initialize()` is done in GXFOperator::initialize()
return resource;
}
template <typename ResourceT, typename... ArgsT>
std::shared_ptr<ResourceT> make_resource(ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating resource");
auto resource = make_resource<ResourceT>("noname_resource", std::forward<ArgsT>(args)...);
return resource;
}
template <typename ConditionT, typename StringT, typename... ArgsT,
typename = std::enable_if_t<std::is_constructible_v<std::string, StringT>>>
std::shared_ptr<ConditionT> make_condition(const StringT& name, ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating condition '{}'", name);
auto condition = std::make_shared<ConditionT>(std::forward<ArgsT>(args)...);
condition->name(name);
condition->fragment(this);
auto spec = std::make_shared<ComponentSpec>(this);
condition->setup(*spec.get());
condition->spec(spec);
// Skip initialization. `condition->initialize()` is done in GXFOperator::initialize()
return condition;
}
template <typename ConditionT, typename... ArgsT>
std::shared_ptr<ConditionT> make_condition(ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating condition");
auto condition = make_condition<ConditionT>("noname_condition", std::forward<ArgsT>(args)...);
return condition;
}
template <typename SchedulerT, typename StringT, typename... ArgsT,
typename = std::enable_if_t<std::is_constructible_v<std::string, StringT>>>
std::shared_ptr<SchedulerT> make_scheduler(const StringT& name, ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating scheduler '{}'", name);
auto scheduler = std::make_shared<SchedulerT>(std::forward<ArgsT>(args)...);
scheduler->name(name);
scheduler->fragment(this);
auto spec = std::make_shared<ComponentSpec>(this);
scheduler->setup(*spec.get());
scheduler->spec(spec);
// Skip initialization. `scheduler->initialize()` is done in GXFExecutor::run()
return scheduler;
}
template <typename SchedulerT, typename... ArgsT>
std::shared_ptr<SchedulerT> make_scheduler(ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating scheduler");
auto scheduler = make_scheduler<SchedulerT>("", std::forward<ArgsT>(args)...);
return scheduler;
}
template <typename NetworkContextT, typename StringT, typename... ArgsT,
typename = std::enable_if_t<std::is_constructible_v<std::string, StringT>>>
std::shared_ptr<NetworkContextT> make_network_context(const StringT& name, ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating network context '{}'", name);
auto network_context = std::make_shared<NetworkContextT>(std::forward<ArgsT>(args)...);
network_context->name(name);
network_context->fragment(this);
auto spec = std::make_shared<ComponentSpec>(this);
network_context->setup(*spec.get());
network_context->spec(spec);
// Skip initialization. `network_context->initialize()` is done in GXFExecutor::run()
return network_context;
}
template <typename NetworkContextT, typename... ArgsT>
std::shared_ptr<NetworkContextT> make_network_context(ArgsT&&... args) {
HOLOSCAN_LOG_DEBUG("Creating network_context");
auto network_context = make_network_context<NetworkContextT>("", std::forward<ArgsT>(args)...);
return network_context;
}
virtual void add_operator(const std::shared_ptr<Operator>& op);
virtual void add_flow(const std::shared_ptr<Operator>& upstream_op,
const std::shared_ptr<Operator>& downstream_op);
virtual void add_flow(const std::shared_ptr<Operator>& upstream_op,
const std::shared_ptr<Operator>& downstream_op,
std::set<std::pair<std::string, std::string>> port_pairs);
virtual void compose();
virtual void run();
virtual std::future<void> run_async();
DataFlowTracker& track(uint64_t num_start_messages_to_skip = kDefaultNumStartMessagesToSkip,
uint64_t num_last_messages_to_discard = kDefaultNumLastMessagesToDiscard,
int latency_threshold = kDefaultLatencyThreshold);
DataFlowTracker* data_flow_tracker() { return data_flow_tracker_.get(); }
virtual void compose_graph();
FragmentPortMap port_info() const;
protected:
friend class Application; // to access 'scheduler_' in Application
friend class AppDriver;
template <typename ConfigT, typename... ArgsT>
std::shared_ptr<Config> make_config(ArgsT&&... args) {
return std::make_shared<ConfigT>(std::forward<ArgsT>(args)...);
}
template <typename GraphT>
std::unique_ptr<GraphT> make_graph() {
return std::make_unique<GraphT>();
}
template <typename ExecutorT>
std::shared_ptr<Executor> make_executor() {
return std::make_shared<ExecutorT>(this);
}
template <typename ExecutorT, typename... ArgsT>
std::unique_ptr<Executor> make_executor(ArgsT&&... args) {
return std::make_unique<ExecutorT>(std::forward<ArgsT>(args)...);
}
std::string name_;
Application* app_ = nullptr;
std::shared_ptr<Config> config_;
std::unique_ptr<OperatorGraph> graph_;
std::shared_ptr<Executor> executor_;
std::shared_ptr<Scheduler> scheduler_;
std::shared_ptr<NetworkContext> network_context_;
std::shared_ptr<DataFlowTracker> data_flow_tracker_;
bool is_composed_ = false;
};
} // namespace holoscan
#endif/* HOLOSCAN_CORE_FRAGMENT_HPP */