bridge.recipes.ministral3.ministral3#

Module Contents#

Classes#

Ministral3FinetuneKwargs

Typed options accepted by Ministral3 finetuning recipe helper functions.

Functions#

ministral3_3b_finetune_config

Return a fine-tuning config for Ministral3 3B.

ministral3_8b_finetune_config

Return a fine-tuning config for Ministral3 8B.

ministral3_14b_finetune_config

Return a fine-tuning config for Ministral3 14B.

_ministral3_finetune_common

Create a fine-tuning configuration for Ministral3 family models using a given HuggingFace path.

API#

class bridge.recipes.ministral3.ministral3.Ministral3FinetuneKwargs#

Bases: typing_extensions.TypedDict

Typed options accepted by Ministral3 finetuning recipe helper functions.

Initialization

Initialize self. See help(type(self)) for accurate signature.

hf_path: str#

None

dir: Optional[str]#

None

name: str#

None

train_data_path: Optional[List[str]]#

None

valid_data_path: Optional[List[str]]#

None

test_data_path: Optional[List[str]]#

None

dataset_type: Optional[str]#

None

image_folder: Optional[str]#

None

tokenizer_model: Optional[str]#

None

seq_length: Optional[int]#

None

tensor_model_parallel_size: int#

None

pipeline_model_parallel_size: int#

None

pipeline_dtype: Optional[torch.dtype]#

None

virtual_pipeline_model_parallel_size: Optional[int]#

None

context_parallel_size: int#

None

sequence_parallel: bool#

None

use_megatron_fsdp: bool#

None

train_iters: int#

None

global_batch_size: Optional[int]#

None

micro_batch_size: int#

None

eval_interval: int#

None

save_interval: int#

None

finetune_lr: Optional[float]#

None

min_lr: float#

None

lr_warmup_iters: int#

None

lr_decay_iters: Optional[int]#

None

precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#

None

comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig]#

None

freeze_language_model: bool#

None

freeze_vision_model: bool#

None

freeze_vision_projection: bool#

None

pretrained_checkpoint: Optional[str]#

None

peft: Optional[Union[str, megatron.bridge.peft.base.PEFT]]#

None

wandb_project: Optional[str]#

None

wandb_entity: Optional[str]#

None

wandb_exp_name: Optional[str]#

None

bridge.recipes.ministral3.ministral3.ministral3_3b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.ministral3.ministral3.Ministral3FinetuneKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Ministral3 3B.

Default configuration: 1 node, 8 GPUs

  • LoRA/DoRA (default): TP=1, PP=1, LR=1e-4

  • Full SFT (peft=None): TP=1, PP=1, LR=5e-6

See _ministral3_finetune_common for the full list of parameters.

bridge.recipes.ministral3.ministral3.ministral3_8b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.ministral3.ministral3.Ministral3FinetuneKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Ministral3 8B.

Default configuration: 1 node, 8 GPUs

  • LoRA/DoRA (default): TP=1, PP=1, LR=1e-4

  • Full SFT (peft=None): TP=2, PP=1, LR=5e-6

See _ministral3_finetune_common for the full list of parameters.

bridge.recipes.ministral3.ministral3.ministral3_14b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.ministral3.ministral3.Ministral3FinetuneKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a fine-tuning config for Ministral3 14B.

Default configuration: 1 node, 8 GPUs

  • LoRA/DoRA (default): TP=2, PP=1, LR=1e-4

  • Full SFT (peft=None): TP=4, PP=1, LR=5e-6

See _ministral3_finetune_common for the full list of parameters.

bridge.recipes.ministral3.ministral3._ministral3_finetune_common(
hf_path: str,
dir: Optional[str] = None,
name: str = 'ministral3_finetune',
pretrained_checkpoint: Optional[str] = None,
train_data_path: Optional[List[str]] = None,
valid_data_path: Optional[List[str]] = None,
test_data_path: Optional[List[str]] = None,
dataset_type: Optional[str] = None,
image_folder: Optional[str] = None,
tokenizer_model: Optional[str] = None,
tensor_model_parallel_size: int = 1,
pipeline_model_parallel_size: int = 1,
pipeline_dtype: Optional[torch.dtype] = None,
virtual_pipeline_model_parallel_size: Optional[int] = None,
context_parallel_size: int = 1,
sequence_parallel: bool = False,
use_megatron_fsdp: bool = False,
train_iters: int = 1000,
global_batch_size: int = 32,
micro_batch_size: int = 1,
seq_length: int = 4096,
eval_interval: int = 30,
save_interval: int = 50,
finetune_lr: Optional[float] = None,
min_lr: float = 0.0,
lr_warmup_iters: int = 50,
lr_decay_iters: Optional[int] = None,
precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = 'bf16_mixed',
comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig] = None,
freeze_language_model: bool = False,
freeze_vision_model: bool = False,
freeze_vision_projection: bool = False,
peft: Optional[Union[str, megatron.bridge.peft.base.PEFT]] = None,
wandb_project: Optional[str] = None,
wandb_entity: Optional[str] = None,
wandb_exp_name: Optional[str] = None,
) megatron.bridge.training.config.ConfigContainer#

Create a fine-tuning configuration for Ministral3 family models using a given HuggingFace path.

The dataset pipeline is conversation-based. To train multimodal tokens, ensure your preprocessed data includes placeholders (e.g., ) as needed.