bridge.recipes.nemotronh.nemotronh#
Module Contents#
Classes#
Typed options accepted by NemotronH recipe helper functions. |
Functions#
Return a pre-training config for NemotronH 4B. |
|
Return a pre-training config for NemotronH 8B. |
|
Return a pre-training config for NemotronH 47B. |
|
Return a pre-training config for NemotronH 56B. |
|
Create a pre-training configuration for NemotronH models. |
API#
- class bridge.recipes.nemotronh.nemotronh.NemotronHCommonKwargs#
Bases:
typing_extensions.TypedDictTyped options accepted by NemotronH recipe helper functions.
Initialization
Initialize self. See help(type(self)) for accurate signature.
- model_provider: megatron.bridge.models.nemotronh.NemotronHModel4BProvider | megatron.bridge.models.nemotronh.NemotronHModel8BProvider | megatron.bridge.models.nemotronh.NemotronHModel47BProvider | megatron.bridge.models.nemotronh.NemotronHModel56BProvider#
None
- tokenizer_model: str | None#
None
- dir: str | None#
None
- name: str#
None
- data_paths: list[str] | None#
None
- data_args_path: str | None#
None
- train_data_path: list[str] | None#
None
- valid_data_path: list[str] | None#
None
- test_data_path: list[str] | None#
None
- per_split_data_args_path: str | None#
None
- mock: bool#
None
- tensor_parallelism: int#
None
- pipeline_parallelism: int#
None
- pipeline_parallelism_dtype: torch.dtype | None#
None
- virtual_pipeline_parallelism: int | None#
None
- context_parallelism: int#
None
- sequence_parallelism: bool#
None
- train_iters: int#
None
- global_batch_size: int#
None
- micro_batch_size: int#
None
- seq_length: int#
None
- lr: float#
None
- min_lr: float#
None
- lr_warmup_iters: int#
None
- lr_decay_iters: int | None#
None
- use_null_tokenizer: bool#
None
- precision_config: megatron.bridge.training.mixed_precision.MixedPrecisionConfig | str | None#
None
- comm_overlap_config: megatron.bridge.training.comm_overlap.CommOverlapConfig | None#
None
- enable_default_comm_overlap: bool#
None
- bridge.recipes.nemotronh.nemotronh.nemotronh_4b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.nemotronh.nemotronh.NemotronHCommonKwargs],
Return a pre-training config for NemotronH 4B.
This recipe is designed for single-node training (1 node). Default parallelism: TP=1, PP=1, SP=False.
See
_nemotronh_commonfor the full list of parameters.
- bridge.recipes.nemotronh.nemotronh.nemotronh_8b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.nemotronh.nemotronh.NemotronHCommonKwargs],
Return a pre-training config for NemotronH 8B.
This recipe is designed for single-node training (1 node). Default parallelism: TP=2, PP=1, SP=True.
See
_nemotronh_commonfor the full list of parameters.
- bridge.recipes.nemotronh.nemotronh.nemotronh_47b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.nemotronh.nemotronh.NemotronHCommonKwargs],
Return a pre-training config for NemotronH 47B.
This recipe is designed for single-node training (1 node with 8 GPUs). Default parallelism: TP=8, PP=1, SP=True.
Note: Uses FP8 precision by default. Communication overlap is disabled by default due to known issues with FP8 current scaling.
See
_nemotronh_commonfor the full list of parameters.
- bridge.recipes.nemotronh.nemotronh.nemotronh_56b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.nemotronh.nemotronh.NemotronHCommonKwargs],
Return a pre-training config for NemotronH 56B.
This recipe is designed for single-node training (1 node with 8 GPUs). Default parallelism: TP=8, PP=1, SP=True.
Note: Uses FP8 precision by default. Communication overlap is disabled by default due to known issues with FP8 current scaling.
See
_nemotronh_commonfor the full list of parameters.
- bridge.recipes.nemotronh.nemotronh._nemotronh_common(
- model_provider: type[megatron.bridge.models.nemotronh.NemotronHModel4BProvider] | type[megatron.bridge.models.nemotronh.NemotronHModel8BProvider] | type[megatron.bridge.models.nemotronh.NemotronHModel47BProvider] | type[megatron.bridge.models.nemotronh.NemotronHModel56BProvider],
- tokenizer_model: str | None = None,
- dir: str | None = None,
- name: str = 'default',
- data_paths: list[str] | None = None,
- data_args_path: str | None = None,
- train_data_path: list[str] | None = None,
- valid_data_path: list[str] | None = None,
- test_data_path: list[str] | None = None,
- per_split_data_args_path: str | None = None,
- mock: bool = False,
- tensor_parallelism: int = 1,
- pipeline_parallelism: int = 1,
- pipeline_parallelism_dtype: torch.dtype | None = torch.bfloat16,
- virtual_pipeline_parallelism: int | None = None,
- context_parallelism: int = 1,
- sequence_parallelism: bool = False,
- train_iters: int = 1168251,
- global_batch_size: int = 768,
- micro_batch_size: int = 1,
- seq_length: int = 8192,
- lr: float = 0.0003,
- min_lr: float = 3e-05,
- lr_warmup_iters: int = 2000,
- lr_decay_iters: int | None = None,
- use_null_tokenizer: bool = True,
- precision_config: megatron.bridge.training.mixed_precision.MixedPrecisionConfig | str | None = 'bf16_mixed',
- comm_overlap_config: megatron.bridge.training.comm_overlap.CommOverlapConfig | None = None,
- enable_default_comm_overlap: bool = True,
Create a pre-training configuration for NemotronH models.
- Parameters:
model_provider – The model provider class for the specific NemotronH variant.
tokenizer_model – HuggingFace tokenizer model name (only used when use_null_tokenizer=False).
dir – Base directory for saving logs and checkpoints.
name – Name of the pre-training run.
data_paths – List of paths to dataset files. If None, mock data will be used.
data_args_path – Path to file containing data arguments.
train_data_path – List of training data paths.
valid_data_path – List of validation data paths.
test_data_path – List of test data paths.
per_split_data_args_path – Path to JSON file with per-split data configuration.
mock – Whether to use mock data. If True, ignores data_paths.
tensor_parallelism – Degree of tensor model parallelism.
pipeline_parallelism – Degree of pipeline model parallelism.
pipeline_parallelism_dtype – Data type for pipeline parallelism.
virtual_pipeline_parallelism – Size of virtual pipeline parallelism.
context_parallelism – Degree of context parallelism to be passed to model_config.
sequence_parallelism – Whether to use sequence parallelism.
train_iters – Total number of training iterations.
global_batch_size – Global batch size for training.
micro_batch_size – Micro batch size for training.
seq_length – Sequence length for training data.
lr – Learning rate.
min_lr – Minimum learning rate for cosine decay.
lr_warmup_iters – Number of warmup iterations for the learning rate.
lr_decay_iters – Number of iterations for learning rate decay.
use_null_tokenizer – Whether to use NullTokenizer instead of HuggingFaceTokenizer.
precision_config – Precision configuration for the model.
comm_overlap_config – Communication overlap configuration for the model.
enable_default_comm_overlap – Whether to enable default comm overlap config if none is provided.
- Returns:
Configuration for pre-training.
- Return type: