bridge.recipes.qwen.qwen3_moe#

Module Contents#

Classes#

Qwen3MoeCommonKwargs

Typed options accepted by Qwen3 MoE recipe helpers.

Qwen3MoeFinetuneKwargs

Typed options accepted by Qwen3 MoE finetuning recipe helper functions.

Functions#

qwen3_30b_a3b_pretrain_config

Return a pre-training config for Qwen3-30B-A3B MoE.

qwen3_235b_a22b_pretrain_config

Return a pre-training config for Qwen3-235B-A22B MoE.

_qwen3_moe_common

Create a pre-training configuration for Qwen3 MoE models using a given HuggingFace path.

qwen3_30b_a3b_finetune_config

Return a finetuning config for Qwen3-30B-A3B MoE.

qwen3_235b_a22b_finetune_config

Return a finetuning config for Qwen3-235B-A22B MoE.

_qwen3_moe_finetune_common

Create a finetuning configuration for Qwen3 MoE models using a given HuggingFace path.

API#

class bridge.recipes.qwen.qwen3_moe.Qwen3MoeCommonKwargs#

Bases: typing_extensions.TypedDict

Typed options accepted by Qwen3 MoE recipe helpers.

Initialization

Initialize self. See help(type(self)) for accurate signature.

hf_path: str#

None

dir: Optional[str]#

None

name: str#

None

data_paths: Optional[List[str]]#

None

data_args_path: Optional[str]#

None

train_data_path: Optional[List[str]]#

None

valid_data_path: Optional[List[str]]#

None

test_data_path: Optional[List[str]]#

None

per_split_data_args_path: Optional[str]#

None

mock: bool#

None

tensor_model_parallel_size: int#

None

pipeline_model_parallel_size: int#

None

pipeline_dtype: Optional[torch.dtype]#

None

virtual_pipeline_model_parallel_size: Optional[int]#

None

context_parallel_size: int#

None

expert_model_parallel_size: Optional[int]#

None

expert_tensor_parallel_size: int#

None

sequence_parallel: bool#

None

use_megatron_fsdp: bool#

None

enable_recompute: bool#

None

account_for_embedding_in_pipeline_split: bool#

None

account_for_loss_in_pipeline_split: bool#

None

train_iters: int#

None

global_batch_size: int#

None

micro_batch_size: int#

None

seq_length: int#

None

lr: float#

None

min_lr: float#

None

lr_warmup_iters: int#

None

lr_decay_iters: Optional[int]#

None

eval_interval: int#

None

save_interval: int#

None

use_null_tokenizer: bool#

None

precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#

None

comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig]#

None

moe_flex_dispatcher_backend: str | None#

None

class bridge.recipes.qwen.qwen3_moe.Qwen3MoeFinetuneKwargs#

Bases: typing_extensions.TypedDict

Typed options accepted by Qwen3 MoE finetuning recipe helper functions.

This is separate from Qwen3MoeCommonKwargs to avoid confusion - finetuning uses SQuAD dataset by default, not the data path fields.

Initialization

Initialize self. See help(type(self)) for accurate signature.

dir: Optional[str]#

None

name: str#

None

pretrained_checkpoint: Optional[str]#

None

peft: Union[str, megatron.bridge.peft.base.PEFT, None]#

None

packed_sequence: bool#

None

train_iters: int#

None

global_batch_size: Optional[int]#

None

micro_batch_size: int#

None

seq_length: Optional[int]#

None

eval_interval: int#

None

save_interval: int#

None

finetune_lr: Optional[float]#

None

min_lr: float#

None

lr_warmup_iters: int#

None

lr_decay_iters: Optional[int]#

None

wandb_project: Optional[str]#

None

wandb_entity: Optional[str]#

None

wandb_exp_name: Optional[str]#

None

precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#

None

bridge.recipes.qwen.qwen3_moe.qwen3_30b_a3b_pretrain_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_moe.Qwen3MoeCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a pre-training config for Qwen3-30B-A3B MoE.

See _qwen3_moe_common for the full list of parameters.

bridge.recipes.qwen.qwen3_moe.qwen3_235b_a22b_pretrain_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_moe.Qwen3MoeCommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a pre-training config for Qwen3-235B-A22B MoE.

See _qwen3_moe_common for the full list of parameters.

bridge.recipes.qwen.qwen3_moe._qwen3_moe_common(
hf_path: str,
dir: Optional[str] = None,
name: str = 'default',
data_paths: Optional[List[str]] = None,
data_args_path: Optional[str] = None,
train_data_path: Optional[List[str]] = None,
valid_data_path: Optional[List[str]] = None,
test_data_path: Optional[List[str]] = None,
per_split_data_args_path: Optional[str] = None,
mock: bool = False,
tensor_model_parallel_size: int = 4,
pipeline_model_parallel_size: int = 2,
pipeline_dtype: Optional[torch.dtype] = torch.bfloat16,
virtual_pipeline_model_parallel_size: Optional[int] = None,
context_parallel_size: int = 1,
expert_model_parallel_size: Optional[int] = 4,
expert_tensor_parallel_size: int = 1,
sequence_parallel: bool = True,
use_megatron_fsdp: bool = False,
enable_recompute: bool = False,
account_for_embedding_in_pipeline_split: bool = False,
account_for_loss_in_pipeline_split: bool = False,
train_iters: int = 300000,
global_batch_size: int = 32,
micro_batch_size: int = 2,
seq_length: int = 4096,
lr: float = 0.0003,
min_lr: float = 3e-05,
lr_warmup_iters: int = 500,
lr_decay_iters: Optional[int] = None,
eval_interval: int = 500,
save_interval: int = 500,
use_null_tokenizer: bool = False,
precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = None,
comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig] = None,
moe_flex_dispatcher_backend: Optional[str] = None,
) megatron.bridge.training.config.ConfigContainer#

Create a pre-training configuration for Qwen3 MoE models using a given HuggingFace path.

Parameters:
  • hf_path (str) – HuggingFace model path (e.g., “Qwen/Qwen3-30B-A3B”, “Qwen/Qwen3-235B-A22B”).

  • dir (Optional[str]) – Base directory for saving logs and checkpoints.

  • name (str) – Name of the pre-training run.

  • data_paths (Optional[List[str]]) – List of paths to dataset files. If None, mock data will be used.

  • data_args_path (Optional[str]) – Path to file containing data arguments.

  • train_data_path (Optional[List[str]]) – List of training data paths.

  • valid_data_path (Optional[List[str]]) – List of validation data paths.

  • test_data_path (Optional[List[str]]) – List of test data paths.

  • per_split_data_args_path (Optional[str]) – Path to JSON file with per-split data configuration.

  • mock (bool) – Whether to use mock data. If True, ignores data_paths.

  • tensor_model_parallel_size (int) – Degree of tensor model parallelism.

  • pipeline_model_parallel_size (int) – Degree of pipeline model parallelism.

  • pipeline_dtype (Optional[torch.dtype]) – Data type for pipeline parallelism.

  • virtual_pipeline_model_parallel_size (Optional[int]) – Size of virtual pipeline parallelism.

  • context_parallel_size (int) – Degree of context parallelism to be passed to model_config.

  • expert_model_parallel_size (Optional[int]) – Degree of expert parallelism for MoE.

  • expert_tensor_parallel_size (int) – Expert tensor parallelism for MoE.

  • sequence_parallel (bool) – Whether to use sequence parallelism.

  • use_megatron_fsdp (bool) – Whether to use Megatron FSDP.

  • enable_recompute (bool) – Whether to enable recompute for memory optimization.

  • account_for_embedding_in_pipeline_split (bool) – Whether to account for embedding in pipeline split.

  • account_for_loss_in_pipeline_split (bool) – Whether to account for loss in pipeline split.

  • train_iters (int) – Total number of training iterations.

  • global_batch_size (int) – Global batch size for training.

  • micro_batch_size (int) – Micro batch size for training.

  • seq_length (int) – Sequence length for training data.

  • lr (float) – Learning rate.

  • min_lr (float) – Minimum learning rate for cosine decay.

  • lr_warmup_iters (int) – Number of warmup iterations for the learning rate.

  • lr_decay_iters (Optional[int]) – Number of iterations over which to decay the LR.

  • precision_config (Optional[Union[MixedPrecisionConfig, str]]) – Precision configuration for the model.

  • comm_overlap_config (Optional[CommOverlapConfig]) – Communication overlap configuration.

  • moe_flex_dispatcher_backend (str | None) – Token dispatcher type [deepep, hybridep].

Returns:

Configuration for pre-training.

Return type:

ConfigContainer

bridge.recipes.qwen.qwen3_moe.qwen3_30b_a3b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_moe.Qwen3MoeFinetuneKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a finetuning config for Qwen3-30B-A3B MoE.

Default configuration: 1 node, 8 GPUs, LoRA

  • LoRA (default): TP=4, PP=1, EP=4, LR=1e-4, dim=8, alpha=16, target_modules=[‘linear_qkv’, ‘linear_proj’]

  • DoRA: TP=4, PP=1, EP=4, LR=1e-4, dim=8, alpha=16, target_modules=[‘linear_qkv’, ‘linear_proj’]

  • Full SFT (peft=None): TP=4, PP=2, EP=4, LR=5e-6, SP=True

Matches NeMo2 recipe at nemo/collections/llm/recipes/qwen3_30b_a3b.py

bridge.recipes.qwen.qwen3_moe.qwen3_235b_a22b_finetune_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_moe.Qwen3MoeFinetuneKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a finetuning config for Qwen3-235B-A22B MoE.

Default configuration: 8 nodes (LoRA) or 16 nodes (Full SFT), 8 GPUs per node

  • LoRA (default): TP=4, PP=4, EP=4, LR=1e-4, dim=8, alpha=16, target_modules=[‘linear_qkv’, ‘linear_proj’] Total: 64 GPUs (8 nodes)

  • DoRA: TP=4, PP=4, EP=4, LR=1e-4, dim=8, alpha=16, target_modules=[‘linear_qkv’, ‘linear_proj’] Total: 64 GPUs (8 nodes)

  • Full SFT (peft=None): TP=4, PP=16, EP=4, LR=5e-6, SP=True Total: 64 GPUs (8 nodes)

Matches NeMo2 recipe at nemo/collections/llm/recipes/qwen3_235b_a22b.py

Note: Uses account_for_embedding_in_pipeline_split and account_for_loss_in_pipeline_split for proper layer distribution in pipeline parallelism.

bridge.recipes.qwen.qwen3_moe._qwen3_moe_finetune_common(
hf_path: str,
dir: Optional[str] = None,
name: str = 'default',
pretrained_checkpoint: Optional[str] = None,
packed_sequence: bool = False,
train_iters: int = 100,
global_batch_size: Optional[int] = None,
micro_batch_size: int = 1,
seq_length: Optional[int] = None,
eval_interval: int = 50,
save_interval: int = 100,
finetune_lr: Optional[float] = None,
min_lr: float = 0.0,
lr_warmup_iters: int = 10,
lr_decay_iters: Optional[int] = None,
wandb_project: Optional[str] = None,
wandb_entity: Optional[str] = None,
wandb_exp_name: Optional[str] = None,
precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = None,
moe_flex_dispatcher_backend: Optional[str] = None,
) megatron.bridge.training.config.ConfigContainer#

Create a finetuning configuration for Qwen3 MoE models using a given HuggingFace path.

Parameters:
  • hf_path (str) – HuggingFace model path (e.g., “Qwen/Qwen3-30B-A3B”, “Qwen/Qwen3-235B-A22B”).

  • dir (Optional[str]) – Base directory for saving logs and checkpoints.

  • name (str) – Name of the finetuning run.

  • pretrained_checkpoint (Optional[str]) – Path to pretrained checkpoint to load.

  • packed_sequence (bool) – Whether to use packed sequences for training efficiency.

  • train_iters (int) – Total number of training iterations.

  • global_batch_size (Optional[int]) – Global batch size for training.

  • micro_batch_size (int) – Micro batch size for training.

  • seq_length (Optional[int]) – Sequence length for training data.

  • eval_interval (int) – Evaluation interval.

  • save_interval (int) – Checkpoint save interval.

  • finetune_lr (Optional[float]) – Learning rate for finetuning.

  • min_lr (float) – Minimum learning rate for cosine decay.

  • lr_warmup_iters (int) – Number of warmup iterations for the learning rate.

  • lr_decay_iters (Optional[int]) – Number of iterations over which to decay the LR.

  • wandb_project (Optional[str]) – Weights & Biases project name.

  • wandb_entity (Optional[str]) – Weights & Biases entity name.

  • wandb_exp_name (Optional[str]) – Weights & Biases experiment name.

  • precision_config (Optional[Union[MixedPrecisionConfig, str]]) – Precision configuration for the model.

  • moe_flex_dispatcher_backend (str | None) – Token dispatcher type [deepep, hybridep].

Returns:

Configuration for finetuning.

Return type:

ConfigContainer