bridge.recipes.qwen.qwen3_moe#
Module Contents#
Classes#
Typed options accepted by Qwen3 MoE recipe helpers. |
|
Typed options accepted by Qwen3 MoE finetuning recipe helper functions. |
Functions#
Return a pre-training config for Qwen3-30B-A3B MoE. |
|
Return a pre-training config for Qwen3-235B-A22B MoE. |
|
Create a pre-training configuration for Qwen3 MoE models using a given HuggingFace path. |
|
Return a finetuning config for Qwen3-30B-A3B MoE. |
|
Return a finetuning config for Qwen3-235B-A22B MoE. |
|
Create a finetuning configuration for Qwen3 MoE models using a given HuggingFace path. |
API#
- class bridge.recipes.qwen.qwen3_moe.Qwen3MoeCommonKwargs#
Bases:
typing_extensions.TypedDictTyped options accepted by Qwen3 MoE recipe helpers.
Initialization
Initialize self. See help(type(self)) for accurate signature.
- hf_path: str#
None
- dir: Optional[str]#
None
- name: str#
None
- data_paths: Optional[List[str]]#
None
- data_args_path: Optional[str]#
None
- train_data_path: Optional[List[str]]#
None
- valid_data_path: Optional[List[str]]#
None
- test_data_path: Optional[List[str]]#
None
- per_split_data_args_path: Optional[str]#
None
- mock: bool#
None
- tensor_model_parallel_size: int#
None
- pipeline_model_parallel_size: int#
None
- pipeline_dtype: Optional[torch.dtype]#
None
- virtual_pipeline_model_parallel_size: Optional[int]#
None
- context_parallel_size: int#
None
- expert_model_parallel_size: Optional[int]#
None
- expert_tensor_parallel_size: int#
None
- sequence_parallel: bool#
None
- use_megatron_fsdp: bool#
None
- enable_recompute: bool#
None
- account_for_embedding_in_pipeline_split: bool#
None
- account_for_loss_in_pipeline_split: bool#
None
- train_iters: int#
None
- global_batch_size: int#
None
- micro_batch_size: int#
None
- seq_length: int#
None
- lr: float#
None
- min_lr: float#
None
- lr_warmup_iters: int#
None
- lr_decay_iters: Optional[int]#
None
- eval_interval: int#
None
- save_interval: int#
None
- use_null_tokenizer: bool#
None
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#
None
- comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig]#
None
- moe_flex_dispatcher_backend: str | None#
None
- class bridge.recipes.qwen.qwen3_moe.Qwen3MoeFinetuneKwargs#
Bases:
typing_extensions.TypedDictTyped options accepted by Qwen3 MoE finetuning recipe helper functions.
This is separate from Qwen3MoeCommonKwargs to avoid confusion - finetuning uses SQuAD dataset by default, not the data path fields.
Initialization
Initialize self. See help(type(self)) for accurate signature.
- dir: Optional[str]#
None
- name: str#
None
- pretrained_checkpoint: Optional[str]#
None
- peft: Union[str, megatron.bridge.peft.base.PEFT, None]#
None
- packed_sequence: bool#
None
- train_iters: int#
None
- global_batch_size: Optional[int]#
None
- micro_batch_size: int#
None
- seq_length: Optional[int]#
None
- eval_interval: int#
None
- save_interval: int#
None
- finetune_lr: Optional[float]#
None
- min_lr: float#
None
- lr_warmup_iters: int#
None
- lr_decay_iters: Optional[int]#
None
- wandb_project: Optional[str]#
None
- wandb_entity: Optional[str]#
None
- wandb_exp_name: Optional[str]#
None
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]]#
None
- bridge.recipes.qwen.qwen3_moe.qwen3_30b_a3b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_moe.Qwen3MoeCommonKwargs],
Return a pre-training config for Qwen3-30B-A3B MoE.
See
_qwen3_moe_commonfor the full list of parameters.
- bridge.recipes.qwen.qwen3_moe.qwen3_235b_a22b_pretrain_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_moe.Qwen3MoeCommonKwargs],
Return a pre-training config for Qwen3-235B-A22B MoE.
See
_qwen3_moe_commonfor the full list of parameters.
- bridge.recipes.qwen.qwen3_moe._qwen3_moe_common(
- hf_path: str,
- dir: Optional[str] = None,
- name: str = 'default',
- data_paths: Optional[List[str]] = None,
- data_args_path: Optional[str] = None,
- train_data_path: Optional[List[str]] = None,
- valid_data_path: Optional[List[str]] = None,
- test_data_path: Optional[List[str]] = None,
- per_split_data_args_path: Optional[str] = None,
- mock: bool = False,
- tensor_model_parallel_size: int = 4,
- pipeline_model_parallel_size: int = 2,
- pipeline_dtype: Optional[torch.dtype] = torch.bfloat16,
- virtual_pipeline_model_parallel_size: Optional[int] = None,
- context_parallel_size: int = 1,
- expert_model_parallel_size: Optional[int] = 4,
- expert_tensor_parallel_size: int = 1,
- sequence_parallel: bool = True,
- use_megatron_fsdp: bool = False,
- enable_recompute: bool = False,
- account_for_embedding_in_pipeline_split: bool = False,
- account_for_loss_in_pipeline_split: bool = False,
- train_iters: int = 300000,
- global_batch_size: int = 32,
- micro_batch_size: int = 2,
- seq_length: int = 4096,
- lr: float = 0.0003,
- min_lr: float = 3e-05,
- lr_warmup_iters: int = 500,
- lr_decay_iters: Optional[int] = None,
- eval_interval: int = 500,
- save_interval: int = 500,
- use_null_tokenizer: bool = False,
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = None,
- comm_overlap_config: Optional[megatron.bridge.training.comm_overlap.CommOverlapConfig] = None,
- moe_flex_dispatcher_backend: Optional[str] = None,
Create a pre-training configuration for Qwen3 MoE models using a given HuggingFace path.
- Parameters:
hf_path (str) – HuggingFace model path (e.g., “Qwen/Qwen3-30B-A3B”, “Qwen/Qwen3-235B-A22B”).
dir (Optional[str]) – Base directory for saving logs and checkpoints.
name (str) – Name of the pre-training run.
data_paths (Optional[List[str]]) – List of paths to dataset files. If None, mock data will be used.
data_args_path (Optional[str]) – Path to file containing data arguments.
train_data_path (Optional[List[str]]) – List of training data paths.
valid_data_path (Optional[List[str]]) – List of validation data paths.
test_data_path (Optional[List[str]]) – List of test data paths.
per_split_data_args_path (Optional[str]) – Path to JSON file with per-split data configuration.
mock (bool) – Whether to use mock data. If True, ignores data_paths.
tensor_model_parallel_size (int) – Degree of tensor model parallelism.
pipeline_model_parallel_size (int) – Degree of pipeline model parallelism.
pipeline_dtype (Optional[torch.dtype]) – Data type for pipeline parallelism.
virtual_pipeline_model_parallel_size (Optional[int]) – Size of virtual pipeline parallelism.
context_parallel_size (int) – Degree of context parallelism to be passed to model_config.
expert_model_parallel_size (Optional[int]) – Degree of expert parallelism for MoE.
expert_tensor_parallel_size (int) – Expert tensor parallelism for MoE.
sequence_parallel (bool) – Whether to use sequence parallelism.
use_megatron_fsdp (bool) – Whether to use Megatron FSDP.
enable_recompute (bool) – Whether to enable recompute for memory optimization.
account_for_embedding_in_pipeline_split (bool) – Whether to account for embedding in pipeline split.
account_for_loss_in_pipeline_split (bool) – Whether to account for loss in pipeline split.
train_iters (int) – Total number of training iterations.
global_batch_size (int) – Global batch size for training.
micro_batch_size (int) – Micro batch size for training.
seq_length (int) – Sequence length for training data.
lr (float) – Learning rate.
min_lr (float) – Minimum learning rate for cosine decay.
lr_warmup_iters (int) – Number of warmup iterations for the learning rate.
lr_decay_iters (Optional[int]) – Number of iterations over which to decay the LR.
precision_config (Optional[Union[MixedPrecisionConfig, str]]) – Precision configuration for the model.
comm_overlap_config (Optional[CommOverlapConfig]) – Communication overlap configuration.
moe_flex_dispatcher_backend (str | None) – Token dispatcher type [deepep, hybridep].
- Returns:
Configuration for pre-training.
- Return type:
- bridge.recipes.qwen.qwen3_moe.qwen3_30b_a3b_finetune_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_moe.Qwen3MoeFinetuneKwargs],
Return a finetuning config for Qwen3-30B-A3B MoE.
Default configuration: 1 node, 8 GPUs, LoRA
LoRA (default): TP=4, PP=1, EP=4, LR=1e-4, dim=8, alpha=16, target_modules=[‘linear_qkv’, ‘linear_proj’]
DoRA: TP=4, PP=1, EP=4, LR=1e-4, dim=8, alpha=16, target_modules=[‘linear_qkv’, ‘linear_proj’]
Full SFT (peft=None): TP=4, PP=2, EP=4, LR=5e-6, SP=True
Matches NeMo2 recipe at nemo/collections/llm/recipes/qwen3_30b_a3b.py
- bridge.recipes.qwen.qwen3_moe.qwen3_235b_a22b_finetune_config(
- **user_kwargs: typing_extensions.Unpack[bridge.recipes.qwen.qwen3_moe.Qwen3MoeFinetuneKwargs],
Return a finetuning config for Qwen3-235B-A22B MoE.
Default configuration: 8 nodes (LoRA) or 16 nodes (Full SFT), 8 GPUs per node
LoRA (default): TP=4, PP=4, EP=4, LR=1e-4, dim=8, alpha=16, target_modules=[‘linear_qkv’, ‘linear_proj’] Total: 64 GPUs (8 nodes)
DoRA: TP=4, PP=4, EP=4, LR=1e-4, dim=8, alpha=16, target_modules=[‘linear_qkv’, ‘linear_proj’] Total: 64 GPUs (8 nodes)
Full SFT (peft=None): TP=4, PP=16, EP=4, LR=5e-6, SP=True Total: 64 GPUs (8 nodes)
Matches NeMo2 recipe at nemo/collections/llm/recipes/qwen3_235b_a22b.py
Note: Uses account_for_embedding_in_pipeline_split and account_for_loss_in_pipeline_split for proper layer distribution in pipeline parallelism.
- bridge.recipes.qwen.qwen3_moe._qwen3_moe_finetune_common(
- hf_path: str,
- dir: Optional[str] = None,
- name: str = 'default',
- pretrained_checkpoint: Optional[str] = None,
- packed_sequence: bool = False,
- train_iters: int = 100,
- global_batch_size: Optional[int] = None,
- micro_batch_size: int = 1,
- seq_length: Optional[int] = None,
- eval_interval: int = 50,
- save_interval: int = 100,
- finetune_lr: Optional[float] = None,
- min_lr: float = 0.0,
- lr_warmup_iters: int = 10,
- lr_decay_iters: Optional[int] = None,
- wandb_project: Optional[str] = None,
- wandb_entity: Optional[str] = None,
- wandb_exp_name: Optional[str] = None,
- precision_config: Optional[Union[megatron.bridge.training.mixed_precision.MixedPrecisionConfig, str]] = None,
- moe_flex_dispatcher_backend: Optional[str] = None,
Create a finetuning configuration for Qwen3 MoE models using a given HuggingFace path.
- Parameters:
hf_path (str) – HuggingFace model path (e.g., “Qwen/Qwen3-30B-A3B”, “Qwen/Qwen3-235B-A22B”).
dir (Optional[str]) – Base directory for saving logs and checkpoints.
name (str) – Name of the finetuning run.
pretrained_checkpoint (Optional[str]) – Path to pretrained checkpoint to load.
packed_sequence (bool) – Whether to use packed sequences for training efficiency.
train_iters (int) – Total number of training iterations.
global_batch_size (Optional[int]) – Global batch size for training.
micro_batch_size (int) – Micro batch size for training.
seq_length (Optional[int]) – Sequence length for training data.
eval_interval (int) – Evaluation interval.
save_interval (int) – Checkpoint save interval.
finetune_lr (Optional[float]) – Learning rate for finetuning.
min_lr (float) – Minimum learning rate for cosine decay.
lr_warmup_iters (int) – Number of warmup iterations for the learning rate.
lr_decay_iters (Optional[int]) – Number of iterations over which to decay the LR.
wandb_project (Optional[str]) – Weights & Biases project name.
wandb_entity (Optional[str]) – Weights & Biases entity name.
wandb_exp_name (Optional[str]) – Weights & Biases experiment name.
precision_config (Optional[Union[MixedPrecisionConfig, str]]) – Precision configuration for the model.
moe_flex_dispatcher_backend (str | None) – Token dispatcher type [deepep, hybridep].
- Returns:
Configuration for finetuning.
- Return type: