# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from modulus.distributed.manager import DistributedManager
from modulus.distributed.utils import _gather, _reduce, _split
class _CopyToParallelRegion(torch.autograd.Function):
"""Pass the input to the parallel region"""
@staticmethod
def symbolic(graph, input_, group_):
return input_
@staticmethod
def forward(ctx, input_, group_):
ctx.group = group_
return input_
@staticmethod
def backward(ctx, grad_output):
return _reduce(grad_output, group=DistributedManager().group(ctx.group))
class _ReduceFromParallelRegion(torch.autograd.Function):
"""All-reduce the input from the parallel region"""
@staticmethod
def symbolic(graph, input_, group_):
return _reduce(input_, group=DistributedManager().group(group_))
@staticmethod
def forward(ctx, input_, group_):
return _reduce(input_, group=DistributedManager().group(group_))
@staticmethod
def backward(ctx, grad_output):
return grad_output
class _ScatterToParallelRegion(torch.autograd.Function):
"""Split the input and keep only the chunk corresponding to the rank."""
@staticmethod
def symbolic(graph, input_, dim_, group_):
return _split(input_, dim_, group=DistributedManager().group(group_))
@staticmethod
def forward(ctx, input_, dim_, group_):
ctx.dim = dim_
ctx.group = group_
return _split(input_, dim_, group=DistributedManager().group(group_))
@staticmethod
def backward(ctx, grad_output):
return (
_gather(grad_output, ctx.dim, group=DistributedManager().group(ctx.group_)),
None,
)
class _GatherFromParallelRegion(torch.autograd.Function):
"""Gather the input from parallel region and concatenate."""
@staticmethod
def symbolic(graph, input_, dim_, group_):
return _gather(input_, dim_, group=DistributedManager().group(group_))
@staticmethod
def forward(ctx, input_, dim_, group_):
ctx.dim = dim_
ctx.group = group_
return _gather(input_, dim_, group=DistributedManager().group(group_))
@staticmethod
def backward(ctx, grad_output):
return (
_split(grad_output, ctx.dim, group=DistributedManager().group(ctx.group)),
None,
)
class _GatherWithinParallelRegion(torch.autograd.Function):
"""
Gather the input within parallel region and concatenate.
The same forward method as _GatherFromParallelRegion, the difference is only in the
backward pass. This method performs a reduction of the gradients before the split in
the backward pass while the other version only performs a split
"""
@staticmethod
def symbolic(graph, input_, dim_, group_):
return _gather(input_, dim_, group=DistributedManager().group(group_))
@staticmethod
def forward(ctx, input_, dim_, group_):
ctx.dim = dim_
ctx.group = group_
return _gather(input_, dim_, group=DistributedManager().group(group_))
@staticmethod
def backward(ctx, grad_output):
red = _reduce(grad_output, group=DistributedManager().group(ctx.group_))
return (
_split(red, ctx.dim, group=DistributedManager().group(ctx.group)),
None,
)
# -----------------
# Helper functions.
# -----------------
[docs]def copy_to_parallel_region(input, group):
"""Copy input"""
return _CopyToParallelRegion.apply(input, group)
[docs]def reduce_from_parallel_region(input, group):
"""All-reduce the input from the matmul parallel region."""
return _ReduceFromParallelRegion.apply(input, group)
[docs]def scatter_to_parallel_region(input, dim, group):
"""Split the input and keep only the corresponding chuck to the rank."""
return _ScatterToParallelRegion.apply(input, dim, group)
[docs]def gather_from_parallel_region(input, dim, group):
"""Gather the input from matmul parallel region and concatenate."""
return _GatherFromParallelRegion.apply(input, dim, group)
[docs]def gather_within_parallel_region(input, dim, group):
"""
Gather the input within parallel region and concatenate.
The same forward method as gather_from_parallel_region, the difference is only in
the backward pass. This method performs a reduction of the gradients before the
split in the backward pass while the other version only performs a split
"""
return _GatherWithinParallelRegion.apply(input, dim, group)