NVIDIA Modulus Sym v1.1.0
Sym v1.1.0

deeplearning/modulus/modulus-sym-v110/_modules/modulus/sym/domain/validator/continuous.html

Source code for modulus.sym.domain.validator.continuous

# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch

from typing import List, Dict
from pathlib import Path

from modulus.sym.domain.validator import Validator
from modulus.sym.domain.constraint import Constraint
from modulus.sym.utils.io.vtk import var_to_polyvtk, VTKBase
from modulus.sym.utils.io import ValidatorPlotter
from modulus.sym.graph import Graph
from modulus.sym.key import Key
from modulus.sym.node import Node
from modulus.sym.constants import TF_SUMMARY
from modulus.sym.dataset import DictPointwiseDataset
from modulus.sym.distributed import DistributedManager


[docs]class PointwiseValidator(Validator): """ Pointwise Validator that allows walidating on pointwise data Parameters ---------- nodes : List[Node] List of Modulus Nodes to unroll graph with. invar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays as input. true_outvar : Dict[str, np.ndarray (N, 1)] Dictionary of numpy arrays used to validate against validation. batch_size : int, optional Batch size used when running validation, by default 1024 plotter : ValidatorPlotter Modulus plotter for showing results in tensorboard. requires_grad : bool = False If automatic differentiation is needed for computing results. """ def __init__( self, nodes: List[Node], invar: Dict[str, np.array], true_outvar: Dict[str, np.array], batch_size: int = 1024, plotter: ValidatorPlotter = None, requires_grad: bool = False, ): # TODO: add support for other datasets? # get dataset and dataloader self.dataset = DictPointwiseDataset(invar=invar, outvar=true_outvar) self.dataloader = Constraint.get_dataloader( dataset=self.dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=0, distributed=False, infinite=False, ) # construct model from nodes self.model = Graph( nodes, Key.convert_list(self.dataset.invar_keys), Key.convert_list(self.dataset.outvar_keys), ) self.manager = DistributedManager() self.device = self.manager.device self.model.to(self.device) # set foward method self.requires_grad = requires_grad self.forward = self.forward_grad if requires_grad else self.forward_nograd # set plotter self.plotter = plotter def save_results(self, name, results_dir, writer, save_filetypes, step): invar_cpu = {key: [] for key in self.dataset.invar_keys} true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader): # Move data to device (may need gradients in future, if so requires_grad=True) invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) true_outvar = Constraint._set_device( true_outvar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) # Collect minibatch info into cpu dictionaries invar_cpu = { key: value + [invar[key].cpu().detach()] for key, value in invar_cpu.items() } true_outvar_cpu = { key: value + [true_outvar[key].cpu().detach()] for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: value + [pred_outvar[key].cpu().detach()] for key, value in pred_outvar_cpu.items() } # Concat mini-batch tensors invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()} true_outvar_cpu = { key: torch.cat(value) for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: torch.cat(value) for key, value in pred_outvar_cpu.items() } # compute losses on cpu # TODO add metrics specific for validation # TODO: add potential support for lambda_weighting losses = PointwiseValidator._l2_relative_error(true_outvar_cpu, pred_outvar_cpu) # convert to numpy arrays invar = {k: v.numpy() for k, v in invar_cpu.items()} true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()} pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()} # save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()} named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()} # save batch to vtk/npz file TODO clean this up after graph unroll stuff if "np" in save_filetypes: np.savez( results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar} ) if "vtk" in save_filetypes: var_to_polyvtk( {**invar, **named_true_outvar, **named_pred_outvar}, results_dir + name ) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Validators", name, results_dir, writer, step, invar, true_outvar, pred_outvar, ) # add tensorboard scalars for k, loss in losses.items(): if TF_SUMMARY: writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True) else: writer.add_scalar( "Validators/" + name + "/" + k, loss, step, new_style=True ) return losses
[docs]class PointVTKValidator(PointwiseValidator): """ Pointwise validator using mesh points of VTK object Parameters ---------- vtk_obj : VTKBase Modulus VTK object to use point locations from nodes : List[Node] List of Modulus Nodes to unroll graph with. input_vtk_map : Dict[str, List[str]] Dictionary mapping from Modulus input variables to VTK variable names {"modulus.sym.name": ["vtk name"]}. Use colons to denote components of multi-dimensional VTK arrays ("name":# ) true_vtk_map : Dict[str, List[str]] Dictionary mapping from Modulus target variables to VTK variable names {"modulus.sym.name": ["vtk name"]}. invar : Dict[str, np.array], optional Dictionary of additional numpy arrays as input, by default {} true_outvar : Dict[str, np.array], optional Dictionary of additional numpy arrays used to validate against validation, by default {} batch_size : int Batch size used when running validation. plotter : ValidatorPlotter Modulus plotter for showing results in tensorboard. requires_grad : bool, optional If automatic differentiation is needed for computing results., by default True log_iter : bool, optional Save results to different file each call, by default False """ def __init__( self, vtk_obj: VTKBase, nodes: List[Node], input_vtk_map: Dict[str, List[str]], true_vtk_map: Dict[str, List[str]], invar: Dict[str, np.array] = {}, # Additional inputs true_outvar: Dict[str, np.array] = {}, # Additional targets batch_size: int = 1024, plotter: ValidatorPlotter = None, requires_grad: bool = False, log_iter: bool = False, ): # Set VTK file save dir and file name self.vtk_obj = vtk_obj self.vtk_obj.file_dir = "./validators" self.vtk_obj.file_name = "validator" # Set up input/output names invar_vtk = self.vtk_obj.get_data_from_map(input_vtk_map) invar.update(invar_vtk) # Extract true vars from VTK true_vtk = self.vtk_obj.get_data_from_map(true_vtk_map) true_outvar.update(true_vtk) # set plotter self.plotter = plotter self.log_iter = log_iter # initialize inferencer super().__init__( nodes=nodes, invar=invar, true_outvar=true_outvar, batch_size=batch_size, plotter=plotter, requires_grad=requires_grad, ) def save_results(self, name, results_dir, writer, save_filetypes, step): invar_cpu = {key: [] for key in self.dataset.invar_keys} true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys} # Loop through mini-batches for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader): # Move data to device (may need gradients in future, if so requires_grad=True) invar = Constraint._set_device( invar0, device=self.device, requires_grad=self.requires_grad ) true_outvar = Constraint._set_device( true_outvar0, device=self.device, requires_grad=self.requires_grad ) pred_outvar = self.forward(invar) # Collect minibatch info into cpu dictionaries invar_cpu = { key: value + [invar[key].cpu().detach()] for key, value in invar_cpu.items() } true_outvar_cpu = { key: value + [true_outvar[key].cpu().detach()] for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: value + [pred_outvar[key].cpu().detach()] for key, value in pred_outvar_cpu.items() } # Concat mini-batch tensors invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()} true_outvar_cpu = { key: torch.cat(value) for key, value in true_outvar_cpu.items() } pred_outvar_cpu = { key: torch.cat(value) for key, value in pred_outvar_cpu.items() } # compute losses on cpu # TODO add metrics specific for validation # TODO: add potential support for lambda_weighting losses = PointwiseValidator._l2_relative_error(true_outvar_cpu, pred_outvar_cpu) # convert to numpy arrays invar = {k: v.numpy() for k, v in invar_cpu.items()} true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()} pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()} # save batch to vtk file TODO clean this up after graph unroll stuff named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()} named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()} # save batch to vtk/npz file TODO clean this up after graph unroll stuff self.vtk_obj.file_dir = Path(results_dir) self.vtk_obj.file_name = Path(name).stem if "np" in save_filetypes: np.savez( results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar} ) if "vtk" in save_filetypes: if self.log_iter: self.vtk_obj.var_to_vtk(data_vars={**pred_outvar}, step=step) else: self.vtk_obj.var_to_vtk(data_vars={**pred_outvar}) # add tensorboard plots if self.plotter is not None: self.plotter._add_figures( "Validators", name, results_dir, writer, step, invar, true_outvar, pred_outvar, ) # add tensorboard scalars for k, loss in losses.items(): if TF_SUMMARY: writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True) else: writer.add_scalar( "Validators/" + name + "/" + k, loss, step, new_style=True ) return losses
© Copyright 2023, NVIDIA Modulus Team. Last updated on Oct 17, 2023.