Modulus Sym
constant values used by Modulus
Helper functions for unrolling computational graph
- class modulus.sym.graph.Graph(nodes: List[Node], invar: List[Key], req_names: List[Key], diff_nodes: List[Node] = [], func_arch: Optional[bool] = None, func_arch_allow_partial_hessian: Optional[bool] = None)[source]
Bases:
Module
Torch Module that is constructed by unrolling a computational graph given desired inputs, outputs, and evaluatable nodes.
Examples
Here is a simple example of using Graph to unroll a two node graph. >>> import torch >>> from sympy import Symbol >>> from modulus.sym.node import Node >>> from modulus.sym.key import Key >>> from modulus.sym.graph import Graph >>> node_1 = Node.from_sympy(Symbol(‘x’) + Symbol(‘y’), ‘u’) >>> node_2 = Node.from_sympy(Symbol(‘u’) + 1.0, ‘v’) >>> graph = Graph([node_1, node_2], [Key(‘x’), Key(‘y’)], [Key(‘v’)]) >>> graph.forward({‘x’: torch.tensor([1.0]), ‘y’: torch.tensor([2.0])}) {‘v’: tensor([4.])}
- Parameters
nodes (List[Node]) – List of Modulus Nodes to unroll graph with.
invar (List[Key]) – List of inputs to graph.
req_names (List[Key]) – List of required outputs of graph.
diff_nodes (List[Node]) – List of specialty nodes to compute derivatives. By default this is not needed.
func_arch (bool, Optional) – If True, find the computable derivatives that are part of the Jacobian and Hessian of the neural network. They will be calculated during the forward pass using FuncArch. If None (default), will use the GraphManager to get the global flag (default is False), which could be configured in the hydra config with key graph.func_arch.
func_arch_allow_partial_hessian (bool, Optional) – If True, allow evaluating partial hessian to save some unnecessary computations. For example, when the input is x, outputs are [u, p], and the needed derivatives are [u__x, p__x, u__x__x], func_arch needs to evaluate the full hessian rows to be able to extract jacobian p__x. When this flag is on, func_arch will only output [u__x, u__x__x], and p__x will be evaluated later by the autograd. If None (default), will use the GraphManager to get the global flag (default is True), which could be configured in the hydra config with key graph.func_arch_allow_partial_hessian.
- forward(invar: Dict[str, Tensor]) → Dict[str, Tensor][source]
Defines the computation performed at every call.
Should be overridden by all subclasses.
Key
- class modulus.sym.key.Key(name, size=1, derivatives=[], base_unit=None, scale=(0.0, 1.0))[source]
Bases:
object
Class describing keys used for graph unroll. The most basic key is just a simple string however you can also add dimension information and even information on how to scale inputs to networks.
- Parameters
name (str) – String used to refer to the variable (e.g. ‘x’, ‘y’…).
size (int=1) – Dimension of variable.
derivatives (List=[]) – This signifies that this key holds a derivative with respect to that key.
scale ((float, float)) – Characteristic location and scale of quantity: used for normalisation.
- static convert_config(key_cfg: Union[List, str])[source]
Converts a config input/output key string/list into a key This provides a quick alternative method for defining keys in models
- Parameters
- Returns
- Return type
key_cfg (Union[List, str]) – Config list or string
List of keys generated
List[Key]
Example
The following are some config examples for constructing keys in the YAML file.
Defining input/output keys with size of 1
>>> arch: >>> full_connected: >>> input_keys: input >>> output_keys: output
Defining input/output keys with different sizes
>>> arch: >>> full_connected: >>> input_keys: [input, 2] # Key('input',size=2) >>> output_keys: [output, 3] # Key('output',size=3)
Multiple input/output keys with size of 1 >>> arch: >>> full_connected: >>> input_keys: [a, b, c] >>> output_keys: [u, w, v]
Multiple input/output keys with different sizes >>> arch: >>> full_connected: >>> input_keys: [[a,2], [b,3]] # Key(‘a’,size=2), Key(‘b’,size=3) >>> output_keys: [[u,3],w] # Key(‘u’,size=3), Key(‘w’,size=1)
Modulus nodes
- class modulus.sym.node.Node(inputs, outputs, evaluate, name='Node', optimize=False)[source]
Bases:
object
Base class for all nodes used to unroll computational graph in Modulus.
- Parameters
inputs (List[Union[str, Key]]) – Names of inputs to node. For example, inputs=[‘x’, ‘y’].
outputs (List[Union[str, Key]]) – Names of outputs to node. For example, inputs=[‘u’, ‘v’, ‘p’].
evaluate (Pytorch Function) – A pytorch function that takes in a dictionary of tensors whose keys are the above inputs.
name (str) – Name of node for print statements and debugging.
optimize (bool) – If true then any trainable parameters contained in the node will be optimized by the Trainer.
- property derivatives
returns: derivatives – Derivative inputs of node. :rtype: List[str]
- classmethod from_sympy(eq, out_name, freeze_terms=[], detach_names=[])[source]
generates a Modulus Node from a SymPy equation
- Parameters
eq (Sympy Symbol/Exp) – the equation to convert to a Modulus Node. The inputs to this node consist of all Symbols, Functions, and derivatives of Functions. For example, f(x,y) + f(x,y).diff(x) + k will be converted to a node whose input is [f,f__x,k].
out_name (str) – This will be the name of the output for the node.
freeze_terms (List[int]) – The terms that need to be frozen
detach_names (List[str]) – This will detach the inputs of the resulting node.
- Returns
- Return type
node
- property inputs
returns: inputs – Inputs of node. :rtype: List[str]
- property outputs
returns: outputs – Outputs of node. :rtype: List[str]
Modulus Solver
- class modulus.sym.trainer.AdaHessianMixin[source]
Bases: object
Special functions for training using the higher-order optimizer AdaHessian
- class modulus.sym.trainer.AdamMixin[source]
Bases: object
Special functions for training using the standard optimizers Should be used with ADAM, SGD, RMSProp, etc.
- class modulus.sym.trainer.BFGSMixin[source]
Bases: object
Special functions for training using BFGS optimizer
- class modulus.sym.trainer.Trainer(cfg: DictConfig)[source]
Bases: AdamMixin
, AdaHessianMixin
, BFGSMixin
Base class for optimizing networks on losses/constraints