deeplearning/modulus/modulus-sym-v110/_modules/modulus/sym/domain/validator/discrete.html
Source code for modulus.sym.domain.validator.discrete
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List
import torch
import numpy as np
from modulus.sym.domain.validator import Validator
from modulus.sym.domain.constraint import Constraint
from modulus.sym.utils.io.vtk import grid_to_vtk
from modulus.sym.utils.io import GridValidatorPlotter, DeepONetValidatorPlotter
from modulus.sym.graph import Graph
from modulus.sym.key import Key
from modulus.sym.node import Node
from modulus.sym.constants import TF_SUMMARY
from modulus.sym.distributed import DistributedManager
from modulus.sym.dataset import Dataset, DictGridDataset
[docs]class GridValidator(Validator):
"""Data-driven grid field validator
Parameters
----------
nodes : List[Node]
List of Modulus Nodes to unroll graph with.
dataset: Dataset
dataset which contains invar and true outvar examples
batch_size : int, optional
Batch size used when running validation, by default 100
plotter : GridValidatorPlotter
Modulus plotter for showing results in tensorboard.
requires_grad : bool = False
If automatic differentiation is needed for computing results.
num_workers : int, optional
Number of dataloader workers, by default 0
"""
def __init__(
self,
nodes: List[Node],
dataset: Dataset,
batch_size: int = 100,
plotter: GridValidatorPlotter = None,
requires_grad: bool = False,
num_workers: int = 0,
):
# get dataset and dataloader
self.dataset = dataset
self.dataloader = Constraint.get_dataloader(
dataset=self.dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=num_workers,
distributed=False,
infinite=False,
)
# construct model from nodes
self.model = Graph(
nodes,
Key.convert_list(self.dataset.invar_keys),
Key.convert_list(self.dataset.outvar_keys),
)
self.manager = DistributedManager()
self.device = self.manager.device
self.model.to(self.device)
# set foward method
self.requires_grad = requires_grad
self.forward = self.forward_grad if requires_grad else self.forward_nograd
# set plotter
self.plotter = plotter
def save_results(self, name, results_dir, writer, save_filetypes, step):
invar_cpu = {key: [] for key in self.dataset.invar_keys}
true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys}
pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys}
# Loop through mini-batches
for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader):
# Move data to device (may need gradients in future, if so requires_grad=True)
invar = Constraint._set_device(
invar0, device=self.device, requires_grad=self.requires_grad
)
true_outvar = Constraint._set_device(
true_outvar0, device=self.device, requires_grad=self.requires_grad
)
pred_outvar = self.forward(invar)
# Collect minibatch info into cpu dictionaries
invar_cpu = {
key: value + [invar[key].cpu().detach()]
for key, value in invar_cpu.items()
}
true_outvar_cpu = {
key: value + [true_outvar[key].cpu().detach()]
for key, value in true_outvar_cpu.items()
}
pred_outvar_cpu = {
key: value + [pred_outvar[key].cpu().detach()]
for key, value in pred_outvar_cpu.items()
}
# Concat mini-batch tensors
invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()}
true_outvar_cpu = {
key: torch.cat(value) for key, value in true_outvar_cpu.items()
}
pred_outvar_cpu = {
key: torch.cat(value) for key, value in pred_outvar_cpu.items()
}
# compute losses on cpu
losses = GridValidator._l2_relative_error(true_outvar_cpu, pred_outvar_cpu)
# convert to numpy arrays
invar = {k: v.numpy() for k, v in invar_cpu.items()}
true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()}
pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()}
# save batch to vtk file TODO clean this up after graph unroll stuff
named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()}
named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()}
# save batch to vtk/npz file TODO clean this up after graph unroll stuff
if "np" in save_filetypes:
np.savez(
results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar}
)
if "vtk" in save_filetypes:
grid_to_vtk(
{**invar, **named_true_outvar, **named_pred_outvar}, results_dir + name
)
# add tensorboard plots
if self.plotter is not None:
self.plotter._add_figures(
"Validators",
name,
results_dir,
writer,
step,
invar,
true_outvar,
pred_outvar,
)
# add tensorboard scalars
for k, loss in losses.items():
if TF_SUMMARY:
writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True)
else:
writer.add_scalar(
"Validators/" + name + "/" + k, loss, step, new_style=True
)
return lossesclass _DeepONet_Validator(Validator):
def __init__(
self,
nodes: List[Node],
invar_branch: Dict[str, np.array],
invar_trunk: Dict[str, np.array],
true_outvar: Dict[str, np.array],
batch_size: int,
plotter: DeepONetValidatorPlotter,
requires_grad: bool,
):
# TODO: add support for other datasets?
# get dataset and dataloader
self.dataset = DictGridDataset(invar=invar_branch, outvar=true_outvar)
self.dataloader = Constraint.get_dataloader(
dataset=self.dataset,
batch_size=batch_size,
shuffle=False,
drop_last=False,
num_workers=0,
distributed=False,
infinite=False,
)
# construct model from nodes
self.model = Graph(
nodes,
Key.convert_list(invar_branch.keys())
+ Key.convert_list(invar_trunk.keys()),
Key.convert_list(true_outvar.keys()),
)
self.manager = DistributedManager()
self.device = self.manager.device
self.model.to(self.device)
# set foward method
self.requires_grad = requires_grad
self.forward = self.forward_grad if requires_grad else self.forward_nograd
# set plotter
self.plotter = plotter
[docs]class DeepONet_Physics_Validator(_DeepONet_Validator):
"""
DeepONet Validator
"""
def __init__(
self,
nodes: List[Node],
invar_branch: Dict[str, np.array],
invar_trunk: Dict[str, np.array],
true_outvar: Dict[str, np.array],
batch_size: int = 100,
plotter: DeepONetValidatorPlotter = None,
requires_grad: bool = False,
tile_trunk_input: bool = True,
):
super().__init__(
nodes=nodes,
invar_branch=invar_branch,
invar_trunk=invar_trunk,
true_outvar=true_outvar,
batch_size=batch_size,
plotter=plotter,
requires_grad=requires_grad,
)
if tile_trunk_input:
for k, v in invar_trunk.items():
invar_trunk[k] = np.tile(v, (batch_size, 1))
self.invar_trunk = invar_trunk
self.batch_size = batch_size
def save_results(self, name, results_dir, writer, save_filetypes, step):
invar_cpu = {key: [] for key in self.dataset.invar_keys}
invar_trunk_gpu = Constraint._set_device(
self.invar_trunk, device=self.device, requires_grad=self.requires_grad
)
true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys}
pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys}
# Loop through mini-batches
for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader):
# Move data to device (may need gradients in future, if so requires_grad=True)
invar = Constraint._set_device(
invar0, device=self.device, requires_grad=self.requires_grad
)
true_outvar = Constraint._set_device(
true_outvar0, device=self.device, requires_grad=self.requires_grad
)
pred_outvar = self.forward({**invar, **invar_trunk_gpu})
# Collect minibatch info into cpu dictionaries
invar_cpu = {
key: value + [invar[key].cpu().detach()]
for key, value in invar_cpu.items()
}
true_outvar_cpu = {
key: value + [true_outvar[key].cpu().detach()]
for key, value in true_outvar_cpu.items()
}
pred_outvar_cpu = {
key: value + [pred_outvar[key].cpu().detach()]
for key, value in pred_outvar_cpu.items()
}
# Concat mini-batch tensors
invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()}
true_outvar_cpu = {
key: torch.cat(value) for key, value in true_outvar_cpu.items()
}
pred_outvar_cpu = {
key: torch.cat(value) for key, value in pred_outvar_cpu.items()
}
# compute losses on cpu
losses = DeepONet_Physics_Validator._l2_relative_error(
true_outvar_cpu, pred_outvar_cpu
)
# convert to numpy arrays
invar = {k: v.numpy() for k, v in invar_cpu.items()}
true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()}
pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()}
# save batch to vtk file TODO clean this up after graph unroll stuff
named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()}
named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()}
# save batch to vtk/npz file TODO clean this up after graph unroll stuff
if "np" in save_filetypes:
np.savez(
results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar}
)
ndim = next(iter(self.invar_trunk.values())).shape[-1]
invar_plotter = dict()
true_outvar_plotter = dict()
pred_outvar_plotter = dict()
for k, v in self.invar_trunk.items():
invar_plotter[k] = self.invar_trunk[k].reshape((self.batch_size, -1, ndim))
for k, v in true_outvar.items():
true_outvar_plotter[k] = true_outvar[k].reshape((self.batch_size, -1))
for k, v in pred_outvar.items():
pred_outvar_plotter[k] = pred_outvar[k].reshape((self.batch_size, -1))
# add tensorboard plots
if self.plotter is not None:
self.plotter._add_figures(
"Validators",
name,
results_dir,
writer,
step,
invar_plotter,
true_outvar_plotter,
pred_outvar_plotter,
)
# add tensorboard scalars
for k, loss in losses.items():
if TF_SUMMARY:
writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True)
else:
writer.add_scalar(
"Validators/" + name + "/" + k, loss, step, new_style=True
)
return losses
@staticmethod
def _l2_relative_error(true_var, pred_var): # TODO replace with metric classes
new_var = {}
for key in true_var.keys():
new_var["l2_relative_error_" + str(key)] = torch.sqrt(
torch.mean(
torch.square(torch.reshape(true_var[key], (-1, 1)) - pred_var[key])
)
/ torch.var(true_var[key])
)
return new_var
[docs]class DeepONet_Data_Validator(_DeepONet_Validator):
"""
DeepONet Validator
"""
def __init__(
self,
nodes: List[Node],
invar_branch: Dict[str, np.array],
invar_trunk: Dict[str, np.array],
true_outvar: Dict[str, np.array],
batch_size: int = 100,
plotter: DeepONetValidatorPlotter = None,
requires_grad: bool = False,
):
super().__init__(
nodes=nodes,
invar_branch=invar_branch,
invar_trunk=invar_trunk,
true_outvar=true_outvar,
batch_size=batch_size,
plotter=plotter,
requires_grad=requires_grad,
)
self.invar_trunk_plotter = dict()
ndim = next(iter(invar_trunk.values())).shape[-1]
for k, v in invar_trunk.items():
self.invar_trunk_plotter[k] = np.tile(v, (batch_size, 1)).reshape(
(batch_size, -1, ndim)
)
self.invar_trunk = invar_trunk
def save_results(self, name, results_dir, writer, save_filetypes, step):
invar_cpu = {key: [] for key in self.dataset.invar_keys}
invar_trunk_gpu = Constraint._set_device(
self.invar_trunk, device=self.device, requires_grad=self.requires_grad
)
true_outvar_cpu = {key: [] for key in self.dataset.outvar_keys}
pred_outvar_cpu = {key: [] for key in self.dataset.outvar_keys}
# Loop through mini-batches
for i, (invar0, true_outvar0, lambda_weighting) in enumerate(self.dataloader):
# Move data to device (may need gradients in future, if so requires_grad=True)
invar = Constraint._set_device(
invar0, device=self.device, requires_grad=self.requires_grad
)
true_outvar = Constraint._set_device(
true_outvar0, device=self.device, requires_grad=self.requires_grad
)
pred_outvar = self.forward({**invar, **invar_trunk_gpu})
# Collect minibatch info into cpu dictionaries
invar_cpu = {
key: value + [invar[key].cpu().detach()]
for key, value in invar_cpu.items()
}
true_outvar_cpu = {
key: value + [true_outvar[key].cpu().detach()]
for key, value in true_outvar_cpu.items()
}
pred_outvar_cpu = {
key: value + [pred_outvar[key].cpu().detach()]
for key, value in pred_outvar_cpu.items()
}
# Concat mini-batch tensors
invar_cpu = {key: torch.cat(value) for key, value in invar_cpu.items()}
true_outvar_cpu = {
key: torch.cat(value) for key, value in true_outvar_cpu.items()
}
pred_outvar_cpu = {
key: torch.cat(value) for key, value in pred_outvar_cpu.items()
}
# compute losses on cpu
losses = DeepONet_Data_Validator._l2_relative_error(
true_outvar_cpu, pred_outvar_cpu
)
# convert to numpy arrays
invar = {k: v.numpy() for k, v in invar_cpu.items()}
true_outvar = {k: v.numpy() for k, v in true_outvar_cpu.items()}
pred_outvar = {k: v.numpy() for k, v in pred_outvar_cpu.items()}
# save batch to vtk file TODO clean this up after graph unroll stuff
named_true_outvar = {"true_" + k: v for k, v in true_outvar.items()}
named_pred_outvar = {"pred_" + k: v for k, v in pred_outvar.items()}
# save batch to vtk/npz file TODO clean this up after graph unroll stuff
if "np" in save_filetypes:
np.savez(
results_dir + name, {**invar, **named_true_outvar, **named_pred_outvar}
)
# add tensorboard plots
if self.plotter is not None:
self.plotter._add_figures(
"Validators",
name,
results_dir,
writer,
step,
self.invar_trunk_plotter,
true_outvar,
pred_outvar,
)
# add tensorboard scalars
for k, loss in losses.items():
if TF_SUMMARY:
writer.add_scalar("val/" + name + "/" + k, loss, step, new_style=True)
else:
writer.add_scalar(
"Validators/" + name + "/" + k, loss, step, new_style=True
)
return losses