deeplearning/modulus/modulus-sym-v110/_modules/modulus/sym/models/modified_fourier_net.html
Source code for modulus.sym.models.modified_fourier_net
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional
import torch
import torch.nn as nn
from torch import Tensor
import modulus.sym.models.layers as layers
from modulus.sym.models.arch import Arch
from modulus.sym.key import Key
[docs]class ModifiedFourierNetArch(Arch):
"""
A modified Fourier Network which enables multiplicative interactions
betweeen the Fourier features and hidden layers.
References:
(1) Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S.,
Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T. and Ng, R., 2020.
Fourier features let networks learn high frequency functions in low dimensional domains.
arXiv preprint arXiv:2006.10739.
(2) Wang, S., Teng, Y. and Perdikaris, P., 2020.
Understanding and mitigating gradient pathologies in physics-informed
neural networks. arXiv preprint arXiv:2001.04536.
Parameters
----------
input_keys : List[Key]
Input key list
output_keys : List[Key]
Output key list
detach_keys : List[Key], optional
List of keys to detach gradients, by default []
frequencies : Tuple[str, List[float]] = ("axis", [i for i in range(10)])
A tuple that describes the Fourier encodings to use any inputs in
the list `['x', 'y', 'z', 't']`.
The first element describes the type of frequency encoding
with options, `'gaussian', 'full', 'axis', 'diagonal'`.
`'gaussian'` samples frequency of Fourier series from Gaussian.
`'axis'` samples along axis of spectral space with the given list range of frequencies.
`'diagonal'` samples along diagonal of spectral space with the given list range of frequencies.
`'full'` samples along entire spectral space for all combinations of frequencies in given list.
frequencies_params : Tuple[str, List[float]] = ("axis", [i for i in range(10)])
Same as `frequencies` except these are used for encodings
on any inputs not in the list `['x', 'y', 'z', 't']`.
activation_fn : layers.Activation = layers.Activation.SILU
Activation function used by network.
layer_size : int = 512
Layer size for every hidden layer of the model.
nr_layers : int = 6
Number of hidden layers of the model.
skip_connections : bool = False
If true then apply skip connections every 2 hidden layers.
weight_norm : bool = True
Use weight norm on fully connected layers.
adaptive_activations : bool = False
If True then use an adaptive activation function as described here
https://arxiv.org/abs/1906.01170.
"""
def __init__(
self,
input_keys: List[Key],
output_keys: List[Key],
detach_keys: List[Key] = [],
frequencies=("axis", [i for i in range(10)]),
frequencies_params=("axis", [i for i in range(10)]),
activation_fn=layers.Activation.SILU,
layer_size: int = 512,
nr_layers: int = 6,
skip_connections: bool = False,
weight_norm: bool = True,
adaptive_activations: bool = False,
) -> None:
super().__init__(
input_keys=input_keys, output_keys=output_keys, detach_keys=detach_keys
)
self.skip_connections = skip_connections
if adaptive_activations:
activation_par = nn.Parameter(torch.ones(1))
else:
activation_par = None
self.xyzt_var = [x for x in self.input_key_dict if x in ["x", "y", "z", "t"]]
# Prepare slice index
xyzt_slice_index = self.prepare_slice_index(self.input_key_dict, self.xyzt_var)
self.register_buffer("xyzt_slice_index", xyzt_slice_index, persistent=False)
self.params_var = [
x for x in self.input_key_dict if x not in ["x", "y", "z", "t"]
]
params_slice_index = self.prepare_slice_index(
self.input_key_dict, self.params_var
)
self.register_buffer("params_slice_index", params_slice_index, persistent=False)
in_features_xyzt = sum(
(v for k, v in self.input_key_dict.items() if k in self.xyzt_var)
)
in_features_params = sum(
(v for k, v in self.input_key_dict.items() if k in self.params_var)
)
in_features = in_features_xyzt + in_features_params
out_features = sum(self.output_key_dict.values())
in_features = in_features_xyzt + in_features_params
if in_features_xyzt > 0:
self.fourier_layer_xyzt = layers.FourierLayer(
in_features=in_features_xyzt, frequencies=frequencies
)
in_features += self.fourier_layer_xyzt.out_features()
else:
self.fourier_layer_xyzt = None
if in_features_params > 0:
self.fourier_layer_params = layers.FourierLayer(
in_features=in_features_params, frequencies=frequencies_params
)
in_features += self.fourier_layer_params.out_features()
else:
self.fourier_layer_params = None
self.fc_u = layers.FCLayer(
in_features=in_features,
out_features=layer_size,
activation_fn=activation_fn,
weight_norm=weight_norm,
activation_par=activation_par,
)
self.fc_v = layers.FCLayer(
in_features=in_features,
out_features=layer_size,
activation_fn=activation_fn,
weight_norm=weight_norm,
activation_par=activation_par,
)
self.fc_0 = layers.FCLayer(
in_features,
layer_size,
activation_fn,
weight_norm,
activation_par=activation_par,
)
self.fc_layers = nn.ModuleList()
for i in range(nr_layers - 1):
self.fc_layers.append(
layers.FCLayer(
layer_size,
layer_size,
activation_fn,
weight_norm,
activation_par=activation_par,
)
)
self.final_layer = layers.FCLayer(
in_features=layer_size,
out_features=out_features,
activation_fn=layers.Activation.IDENTITY,
weight_norm=False,
activation_par=None,
)
def _tensor_forward(self, x: Tensor) -> Tensor:
x = self.process_input(
x, self.input_scales_tensor, input_dict=self.input_key_dict, dim=-1
)
if self.fourier_layer_xyzt is not None:
in_xyzt_var = self.slice_input(x, self.xyzt_slice_index, dim=-1)
fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var)
x = torch.cat((x, fourier_xyzt), dim=-1)
if self.fourier_layer_params is not None:
in_params_var = self.slice_input(x, self.params_slice_index, dim=-1)
fourier_params = self.fourier_layer_params(in_params_var)
x = torch.cat((x, fourier_params), dim=-1)
xu = self.fc_u(x)
xv = self.fc_v(x)
x = self.fc_0(x)
x_skip: Optional[Tensor] = None
for i, layer in enumerate(self.fc_layers, 1):
x = layer(x)
x = xu - x * xu + x * xv
if self.skip_connections and i % 2 == 0:
if x_skip is not None:
x, x_skip = x + x_skip, x
else:
x_skip = x
x = self.final_layer(x)
x = self.process_output(x, self.output_scales_tensor)
return x
[docs] def forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]:
x = self.concat_input(
in_vars,
self.input_key_dict.keys(),
detach_dict=self.detach_key_dict,
dim=-1,
)
y = self._tensor_forward(x)
return self.split_output(y, self.output_key_dict, dim=-1)def _dict_forward(self, in_vars: Dict[str, Tensor]) -> Dict[str, Tensor]:
"""
This is the original forward function, left here for the correctness test.
"""
x = self.prepare_input(
in_vars,
self.input_key_dict.keys(),
detach_dict=self.detach_key_dict,
dim=-1,
input_scales=self.input_scales,
)
if self.fourier_layer_xyzt is not None:
in_xyzt_var = self.prepare_input(
in_vars,
self.xyzt_var,
detach_dict=self.detach_key_dict,
dim=-1,
input_scales=self.input_scales,
)
fourier_xyzt = self.fourier_layer_xyzt(in_xyzt_var)
x = torch.cat((x, fourier_xyzt), dim=-1)
if self.fourier_layer_params is not None:
in_params_var = self.prepare_input(
in_vars,
self.params_var,
detach_dict=self.detach_key_dict,
dim=-1,
input_scales=self.input_scales,
)
fourier_params = self.fourier_layer_params(in_params_var)
x = torch.cat((x, fourier_params), dim=-1)
xu = self.fc_u(x)
xv = self.fc_v(x)
x = self.fc_0(x)
x_skip: Optional[Tensor] = None
for i, layer in enumerate(self.fc_layers, 1):
x = layer(x)
x = xu - x * xu + x * xv
if self.skip_connections and i % 2 == 0:
if x_skip is not None:
x, x_skip = x + x_skip, x
else:
x_skip = x
x = self.final_layer(x)
return self.prepare_output(
x, self.output_key_dict, dim=-1, output_scales=self.output_scales
)