USER GUIDE

The following guide will show you how to quickly get started with Megatron Core. It will show you the following

  • We will initalize megatron core on 2 GPUS.

  • We will build a GPT model with tensor model parallel size 2, pipeline parallel size 1

  • We will train it for a few iterations using megatron core schedules

  • We will save the model using the distributed checkpointing format

  • We will load the model saved above.

*NOTE: The following has been testing for megatron core version 0.5 and NGC Pytorch Container version 24.02

Environment Setup

Copy
Copied!
            

docker run --ipc=host --shm-size=512m --gpus all -it nvcr.io/nvidia/pytorch:24.02-py3 pip install megatron_core pip install tensorstore==0.1.45 pip install zarr


Writing Your First Training Loop

The following steps will walk you through how you can create a sample GPT model split across tensors (Tensor model parallel ) on 2 GPUS, and run a forward pass through it using a MockGPT dataset helper class that we created in Megatron core.

NOTE: All of the folowing steps needs to be put into a script and then run as explained in the last step

STEP 1 - Initialize Distributed Training and Model parallel setup The following utility when called initalizes your distributed setup.

Copy
Copied!
            

import os import torch from megatron.core import parallel_state def initialize_distributed(tensor_model_parallel_size = 1, pipeline_model_parallel_size = 1): # Torch setup for distributed training rank = int(os.environ['LOCAL_RANK']) world_size = torch.cuda.device_count() torch.cuda.set_device(rank) torch.distributed.init_process_group(world_size=world_size, rank=rank) # Megatron core distributed training initialization parallel_state.initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size)


STEP 2 - GPT Model Setup The following step shows you how you can quickly create a GPT model. For a list of other configs that you can pass into the model look into transformer_config.py

Copy
Copied!
            

from megatron.core.transformer.transformer_config import TransformerConfig from megatron.core.models.gpt.gpt_model import GPTModel from megatron.core.models.gpt.gpt_layer_specs import get_gpt_layer_local_spec def model_provider(): """Build the model.""" transformer_config = TransformerConfig( num_layers=2, hidden_size=12, num_attention_heads=4, use_cpu_initialization=True, pipeline_dtype=torch.float32) gpt_model = GPTModel( config=transformer_config, transformer_layer_spec=get_gpt_layer_local_spec(), vocab_size=100, max_sequence_length=64) return gpt_model


STEP 3 - GPT Mock dataset setup The following shows you how you can quickly get started with a mock dataset utility we created. In order to train with your data, please use the actual GPTDataset class in gpt_dataset.py

To find more information about megatron core data pipeline please refer to this

Copy
Copied!
            

from torch.utils.data import DataLoader from megatron.core.datasets.utils import Split from megatron.core.datasets.gpt_dataset import GPTDatasetConfig, MockGPTDataset def get_train_data_iterator(): config = GPTDatasetConfig( is_built_on_rank=lambda:(parallel_state.is_pipeline_last_stage() or parallel_state.is_pipeline_first_stage()), random_seed = 0, sequence_length = 64, blend=[], mock=True, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, tokenizer="dummy") training_data= MockGPTDataset(Split.train, config) train_dataloader = DataLoader(training_data, batch_size=8, shuffle=True) train_iterator = iter(train_dataloader) return train_iterator


STEP 4 - Forward Step Function In megatron core, we use schedules.py to run the model. So it is sufficient to define a forward step function which takes as input the data iterator and the model and produces as output the output tensor and a loss function

Copy
Copied!
            

from functools import partial def forward_step_func(data_iterator, model): def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() # If you have data parallel reduce loss across data parallel groups. # If pipeline parallel, loss computation is done only in last stage. return loss, {'lm loss': loss} data = next(data_iterator) tokens = data['tokens'].to(device) attention_mask = data['attention_mask'].to(device) position_ids = data['position_ids'].to(device) labels = data['labels'].to(device) loss_mask = data['loss_mask'].to(device) output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(loss_func, loss_mask)


STEP 5 - Load and Save Distributed Checkpoint Megatron core uses distributed checkpoint for loading and saving model. This gives you the flexiblity to convert model from one model parallel setting to another when you load a model (i.e A model trained with tensor parallel size 2, can now be loaded as tensor model parallel size 4 etc.)

NOTE: Make sure you have zarr and tensorstore pip package installed as shown in the environment setup

Copy
Copied!
            

from megatron.core import dist_checkpointing def save_distributed_checkpoint(checkpoint_path, gpt_model): sharded_state_dict = gpt_model.sharded_state_dict(prefix='') dist_checkpointing.save(sharded_state_dict=sharded_state_dict, checkpoint_dir=checkpoint_path) def load_distributed_checkpoint(checkpoint_path, gpt_model): sharded_state_dict=gpt_model.sharded_state_dict(prefix='') checkpoint = dist_checkpointing.load(sharded_state_dict=sharded_state_dict, checkpoint_dir=checkpoint_path) gpt_model.load_state_dict(checkpoint) return gpt_model


STEP 6 - Main Function The following is the main function that needs to go into your script.

Copy
Copied!
            

from pathlib import Path from torch.optim import Adam from megatron.core.pipeline_parallel.schedules import get_forward_backward_func from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed if __name__ == "__main__": initialize_distributed(tensor_model_parallel_size=2, pipeline_model_parallel_size=1) model_parallel_cuda_manual_seed(123) gpt_model = model_provider() device = torch.device("cuda") gpt_model.to(device) optim = Adam(gpt_model.parameters()) train_iterator = get_train_data_iterator() forward_backward_func = get_forward_backward_func() # Running the model for 5 iterations for _ in range(5): optim.zero_grad() losses_reduced = forward_backward_func( forward_step_func=forward_step_func, data_iterator=train_iterator, model=gpt_model, num_microbatches=1, seq_length=64, micro_batch_size=8, decoder_seq_length=64, forward_only=False) optim.step() print(f'Losses reduced :{losses_reduced}') # Saving the model save_distributed_checkpoint(gpt_model=gpt_model, checkpoint_path='/workspace/ckpt') # Loading the model gpt_model = load_distributed_checkpoint(gpt_model=gpt_model, checkpoint_path='/workspace/ckpt') gpt_model.to(device) print('Successfully loaded the model')


STEP 7 - Running the full example All the above steps are put to gether in a run_simple_mcore_train_loop.py script in examples folder in megatron . You can run it as follows

Copy
Copied!
            

git clone https://github.com/NVIDIA/Megatron-LM.git cd Megatron-LM/examples NUM_GPUS=2 torchrun --nproc-per-node $NUM_GPUS run_simple_mcore_train_loop.py


Extending Further

The above example introduced you to a basic training loop in MCore. To see more advanced examples please look at [pretrain_gpt.py]. That will show you how you can write more complex training loops, involving pipeline parallel, context parallel, rope embeddings, mixture of experts and all other functionalities present in mcore.

Previous Megatron Core User Guide
Next API Guide
© Copyright 2022-2024, NVIDIA. Last updated on Mar 16, 2024.