User Guide
The following guide is a short getting started guide for Megatron Core. In it you:
Initialize Megatron Core on 2 GPUS.
Build a GPT model with tensor model parallel size 2, pipeline parallel size 1
Train it for a five iterations using Megatron Core schedules
Save the model using the distributed checkpointing format
Load the model saved above.
NOTE: The following sample was tested using Megatron Core version 0.8.0 and NGC PyTorch Container version 24.02.
Environment Setup
docker run --ipc=host --shm-size=512m --gpus 2 -it nvcr.io/nvidia/pytorch:24.02-py3
git clone https://github.com/NVIDIA/Megatron-LM.git && cd Megatron-LM
Writing Your First Training Loop
In the following steps you create a sample GPT model split across tensors (Tensor model parallel) on 2 GPUS, and run a forward pass through it using a MockGPT dataset helper class that we created in Megatron Core.
NOTE: All of the following steps are in the run_simple_mcore_train_loop.py script.
To run the run_simple_mcore_train_loop.py
script:
PYTHONPATH=$PYTHON_PATH:./megatron torchrun --nproc-per-node 2 examples/run_simple_mcore_train_loop.py
STEP 1 - Initialize Distributed Training and Model Parallel Setup
The following utility, when called, initializes your distributed setup.
import os
import torch
from megatron.core import parallel_state
def initialize_distributed(tensor_model_parallel_size = 1, pipeline_model_parallel_size = 1):
# Torch setup for distributed training
rank = int(os.environ['LOCAL_RANK'])
world_size = torch.cuda.device_count()
torch.cuda.set_device(rank)
torch.distributed.init_process_group(world_size=world_size, rank=rank)
# Megatron core distributed training initialization
parallel_state.initialize_model_parallel(tensor_model_parallel_size, pipeline_model_parallel_size)
STEP 2 - GPT Model Setup
In this step, you create a GPT model. For a list of other configurations that you can pass into the model open and review transformer_config.py.
from megatron.core.transformer.transformer_config import TransformerConfig
from megatron.core.models.gpt.gpt_model import GPTModel
from megatron.core.models.gpt.gpt_layer_specs import get_gpt_layer_local_spec
def model_provider():
"""Build the model."""
transformer_config = TransformerConfig(
num_layers=2,
hidden_size=12,
num_attention_heads=4,
use_cpu_initialization=True,
pipeline_dtype=torch.float32)
gpt_model = GPTModel(
config=transformer_config,
transformer_layer_spec=get_gpt_layer_local_spec(),
vocab_size=100,
max_sequence_length=64)
return gpt_model
STEP 3 - GPT Mock Dataset Setup
In the following step, you explore the mock dataset utility.
To train the model using your data, use the GPTDataset class in gpt_dataset.py.
To find more information about Megatron Core data pipeline, see the data pipeline readme.md.
import torch
from torch.utils.data import DataLoader
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDatasetConfig, MockGPTDataset
from megatron.training.tokenizer.tokenizer import _NullTokenizer
from megatron.core.datasets.utils import compile_helpers
_SEQUENCE_LENGTH = 64
def get_train_data_iterator():
if torch.distributed.is_available() and torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
compile_helpers()
torch.distributed.barrier()
else:
compile_helpers()
config = GPTDatasetConfig(
random_seed=0,
sequence_length=_SEQUENCE_LENGTH,
reset_position_ids=False,
reset_attention_mask=False,
eod_mask_loss=False,
tokenizer=_NullTokenizer(vocab_size=_SEQUENCE_LENGTH),
)
datasets = BlendedMegatronDatasetBuilder(
MockGPTDataset, [1000, None, None], lambda: True, config
).build()
train_dataloader = DataLoader(datasets[0], batch_size=8, shuffle=True)
train_iterator = iter(train_dataloader)
return train_iterator
STEP 4 - Forward Step Function
Megatron Core uses schedules.py to run the model. It is sufficient to define a forward step function, which takes as input the data iterator and the model and produces as output the output tensor and a loss function.
from functools import partial
def forward_step_func(data_iterator, model):
def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor):
losses = output_tensor.float()
loss_mask = loss_mask.view(-1).float()
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# If you have data parallel reduce loss across data parallel groups.
# If pipeline parallel, loss computation is done only in last stage.
return loss, {'lm loss': loss}
data = next(data_iterator)
tokens = data['tokens'].to(device)
attention_mask = data['attention_mask'].to(device)
position_ids = data['position_ids'].to(device)
labels = data['labels'].to(device)
loss_mask = data['loss_mask'].to(device)
output_tensor = model(tokens, position_ids, attention_mask,
labels=labels)
return output_tensor, partial(loss_func, loss_mask)
STEP 5 - Load and Save Distributed Checkpoint
Megatron Core uses distributed checkpoints for loading and saving models. This gives you the flexibility to convert the model from one model parallel setting to another when you load a model. For example, a model trained with tensor parallel size 2, can be loaded again as tensor model parallel size 4, and so forth.
from megatron.core import dist_checkpointing
def save_distributed_checkpoint(checkpoint_path, gpt_model):
sharded_state_dict = gpt_model.sharded_state_dict(prefix='')
dist_checkpointing.save(sharded_state_dict=sharded_state_dict, checkpoint_dir=checkpoint_path)
def load_distributed_checkpoint(checkpoint_path, gpt_model):
sharded_state_dict=gpt_model.sharded_state_dict(prefix='')
checkpoint = dist_checkpointing.load(sharded_state_dict=sharded_state_dict, checkpoint_dir=checkpoint_path)
gpt_model.load_state_dict(checkpoint)
return gpt_model
STEP 6 - Main Function
The following code snippet is the main function that needs to go into your script. It runs the model for 5 iterations, saves the model, and loads the data model.
from pathlib import Path
from torch.optim import Adam
from megatron.core.pipeline_parallel.schedules import get_forward_backward_func
from megatron.core.tensor_parallel.random import model_parallel_cuda_manual_seed
if __name__ == "__main__":
initialize_distributed(tensor_model_parallel_size=2, pipeline_model_parallel_size=1)
model_parallel_cuda_manual_seed(123)
gpt_model = model_provider()
device = torch.device("cuda")
gpt_model.to(device)
optim = Adam(gpt_model.parameters())
train_iterator = get_train_data_iterator()
forward_backward_func = get_forward_backward_func()
# Running the model for 5 iterations
for _ in range(5):
optim.zero_grad()
losses_reduced = forward_backward_func(
forward_step_func=forward_step_func,
data_iterator=train_iterator,
model=gpt_model,
num_microbatches=1,
seq_length=64,
micro_batch_size=8,
decoder_seq_length=64,
forward_only=False)
optim.step()
print(f'Losses reduced :{losses_reduced}')
# Saving the model
save_distributed_checkpoint(gpt_model=gpt_model, checkpoint_path='/workspace/ckpt')
# Loading the model
gpt_model = load_distributed_checkpoint(gpt_model=gpt_model, checkpoint_path='/workspace/ckpt')
gpt_model.to(device)
print('Successfully loaded the model')
Extending Further
The example you explored here is a basic training loop in Megatron Core. To review more advanced examples, explore [pretrain_gpt.py]. pretrain_gpt.py
has more complex training loops that includes the following and other Megatron Core features:
pipeline parallel
context parallel
rope embeddings
mixture of experts