models.t5 package
- class core.models.T5.t5_model.T5LMHead(*args: Any, **kwargs: Any)
Bases:
megatron.core.transformer.module.MegatronModule
Masked LM head for T5
- Parameters
config (TransformerConfig) – transformer config
parallel_output (bool) – wether output logits being distributed or not.
vocab_size (int) – vocabulary size
pre_process (bool) – Include embedding layer
share_embeddings_and_output_weights (bool) – When True, input embeddings and output logit weights are shared.
- forward(hidden_states: torch.Tensor, word_embeddings_weight: torch.Tensor) → torch.Tensor
Forward pass.
- Parameters
hidden_states (Tensor) – output hidden states from decoder
word_embeddings_weight (Tensor) – word embedding weight
- Returns
- Return type
logits tensor
Tensor
- class core.models.T5.t5_model.T5Model(*args: Any, **kwargs: Any)
Bases:
megatron.core.models.common.language_module.language_module.LanguageModule
T5 Language model.
- Parameters
config (TransformerConfig) – transformer config
transformer_encoder_layer_spec (ModuleSpec) – transformer layer customization specs for encoder
transformer_decoder_layer_spec (ModuleSpec) – transformer layer customization specs for decoder
vocab_size (int) – vocabulary size
max_sequence_length (int) – maximum size of sequence. This is used for positional embedding
pre_process (bool) – Include embedding layer (used with pipeline parallelism)
post_process (bool) – Include an output layer (used with pipeline parallelism)
fp16_lm_cross_entropy (bool, optional) – Defaults to False
parallel_output (bool) – Do not gather the outputs, keep them split across tensor parallel ranks
share_embeddings_and_output_weights (bool) – When True, input embeddings and output logit weights are shared. Defaults to False.
position_embedding_type (string) – Position embedding type. Options [‘learned_absolute’, ‘rope’]. Defaults is ‘learned_absolute’.
rotary_percent (float) – Percent of rotary dimension to use for rotary position embeddings. Defaults to 1.0 (100%). Ignored unless position_embedding_type is ‘rope’.
seq_len_interpolation_factor (float) – scale of linearly interpolating RoPE for longer sequences. The value must be a float larger than 1.0. Defaults to None.
- forward(encoder_input_ids: torch.Tensor, decoder_input_ids: torch.Tensor, encoder_attn_mask: torch.Tensor, decoder_attn_mask: torch.Tensor, encoder_decoder_attn_mask: torch.Tensor, lm_labels: Optional[torch.Tensor] = None, inference_params: Optional[megatron.core.InferenceParams] = None) → torch.Tensor
Forward pass.
- Parameters
encoder_input_ids (Tensor) – input ids for encoder
decoder_input_ids (Tensor) – input ids for decoder
encoder_attn_mask (Tensor) – self-attention mask for encoder
decoder_attn_mask (Tensor) – self-attention mask for decoder
encoder_decoder_attn_mask (Tensor) – cross-attention mask between encoder and decoder
lm_labels (Tensor) – labels for decoder output
inference_params (InferenceParams) – relevant arguments for inferencing
- Returns
- Return type
loss tensor
Tensor
- set_input_tensor(input_tensor)
See megatron.model.transformer.set_input_tensor()
- sharded_state_dict(prefix: str = '', sharded_offsets: tuple = ()) → megatron.core.dist_checkpointing.mapping.ShardedStateDict
Function to share the input embeddings and output logit weights.
- core.models.T5.t5_model.t5_extended_attention_mask(attention_mask_list: List[torch.Tensor]) → List[torch.Tensor]
- core.models.T5.t5_model.t5_position_ids(token_ids: torch.Tensor) → torch.Tensor
Calculate position ids from token ids :param token_ids: input tokens :type token_ids: Tensor
- Returns
- Return type
position ids
Tensor