bridge.data.vlm_datasets.mock_provider#
Generic mock conversation-style VLM dataset and provider.
This module produces synthetic image(s) and minimal conversations that are
compatible with HF AutoProcessor.apply_chat_template and the collate
functions defined in collate.py. It is processor-agnostic and can be used
with any multimodal model whose processor supports the standard conversation
schema and optional images argument.
Module Contents#
Classes#
DatasetProvider for generic mock VLM conversation datasets. |
API#
- class bridge.data.vlm_datasets.mock_provider.MockVLMConversationProvider#
Bases:
megatron.bridge.training.config.DatasetProviderDatasetProvider for generic mock VLM conversation datasets.
Builds train/valid/test datasets using a HF AutoProcessor and the
MockVLMConversationDatasetimplementation. Intended to work across different VLM models whose processors support the conversation schema.- seq_length: int#
None
- hf_processor_path: str#
None
- prompt: str#
‘Describe this image.’
- random_seed: int#
0
- image_size: Tuple[int, int]#
(256, 256)
- pad_to_max_length: bool#
True
- create_attention_mask: bool#
True
- skip_getting_attention_mask_from_dataset: bool#
True
- num_images: int#
1
- dataloader_type: Optional[Literal[single, cyclic, external]]#
‘single’
- _processor: Optional[Any]#
None
- _make_base_examples() List[Dict[str, Any]]#
- build_datasets(
- context: megatron.bridge.training.config.DatasetBuildContext,