bridge.models.ministral3.ministral3_bridge#

Megatron Bridge for Ministral 3 Vision-Language Models.

This module provides the bridge implementation for converting between HuggingFace Ministral-3 models and Megatron-Core format.

Supported models:

  • Ministral-3-3B-Base-2512

  • Ministral-3-3B-Instruct-2512

  • Ministral-3-3B-Reasoning-2512

  • Ministral-3-8B-Base-2512

  • Ministral-3-8B-Instruct-2512

  • Ministral-3-8B-Reasoning-2512

  • Ministral-3-14B-Base-2512

  • Ministral-3-14B-Instruct-2512

  • Ministral-3-14B-Reasoning-2512

Reference: https://huggingface.co/mistralai/Ministral-3-3B-Base-2512

Module Contents#

Classes#

Ministral3Bridge

Megatron Bridge for Ministral 3 Vision-Language Models.

API#

class bridge.models.ministral3.ministral3_bridge.Ministral3Bridge#

Bases: megatron.bridge.models.conversion.model_bridge.MegatronModelBridge

Megatron Bridge for Ministral 3 Vision-Language Models.

This bridge handles conversion between HuggingFace Mistral3ForConditionalGeneration and Megatron-Core Ministral3Model format for vision-language models.

The weight mappings handle:

  • Vision model weights (vision encoder)

  • Language model weights

  • Multimodal projector weights

  • Special token embeddings

.. rubric:: Example

from megatron.bridge import AutoBridge bridge = AutoBridge.from_hf_pretrained(“mistralai/Ministral-3-3B-Base-2512”) provider = bridge.to_megatron_provider()

provider_bridge(
hf_pretrained: megatron.bridge.models.hf_pretrained.vlm.PreTrainedVLM,
) megatron.bridge.models.ministral3.ministral3_provider.Ministral3ModelProvider#

Create a Ministral3ModelProvider from a HuggingFace pretrained VL model.

Parameters:

hf_pretrained – HuggingFace pretrained VLM model

Returns:

Ministral3ModelProvider configured with the HF model’s parameters

mapping_registry() megatron.bridge.models.conversion.mapping_registry.MegatronMappingRegistry#

Return MegatronMappingRegistry containing parameter mappings for VL models.

HuggingFace weight structure:

  • language_model.model.embed_tokens.weight

  • language_model.model.layers.{i}.input_layernorm.weight

  • language_model.model.layers.{i}.self_attn.{q,k,v,o}_proj.weight

  • language_model.model.layers.{i}.post_attention_layernorm.weight

  • language_model.model.layers.{i}.mlp.{gate,up,down}_proj.weight

  • language_model.model.norm.weight

  • language_model.lm_head.weight

  • vision_tower.** (patch_conv, ln_pre, transformer layers)

  • multi_modal_projector.{norm,linear}.weight

Returns:

MegatronMappingRegistry with all parameter mappings