bridge.models.ministral3.modeling_ministral3#
Ministral 3 Vision-Language Model for Megatron.
This module provides the Ministral3Model class that combines:
HuggingFace’s vision encoder (vision_tower) for image processing
HuggingFace’s multimodal projector for vision-to-language projection
Megatron’s language model for text generation
Reference: https://huggingface.co/mistralai/Ministral-3-3B-Base-2512
Module Contents#
Classes#
Ministral 3 Vision-Language (VL) model wrapper for Megatron. |
API#
- class bridge.models.ministral3.modeling_ministral3.Ministral3Model(
- config: megatron.bridge.models.gpt_provider.GPTModelProvider,
- pre_process: bool = True,
- post_process: bool = True,
- vp_stage: Optional[int] = None,
Bases:
megatron.core.transformer.module.MegatronModuleMinistral 3 Vision-Language (VL) model wrapper for Megatron.
This class combines HuggingFace’s vision components with Megatron’s language model:
Vision tower (HF): Processes images through the vision encoder
Multimodal projector (HF): Projects vision features to language model space
Language model (Megatron): Generates text conditioned on vision and text inputs
The vision encoder forward pass uses HuggingFace implementation via monkey-patching, while the language model forward pass uses Megatron’s optimized implementation.
- Parameters:
config (GPTModelProvider) – Model provider containing configuration for language and vision modules.
pre_process (bool, optional) – Whether to construct the vision tower and projector. Default: True.
post_process (bool, optional) – Whether to apply post-processing. Default: True.
vp_stage (Optional[int], optional) – Pipeline stage for model parallelism. Default: None.
.. attribute:: pre_process
If True, enables vision and multimodal components.
- Type:
bool
.. attribute:: post_process
If True, enables post-processing.
- Type:
bool
.. attribute:: vp_stage
Pipeline stage for model parallelism.
- Type:
Optional[int]
.. attribute:: vision_tower
Vision encoder from HuggingFace.
- Type:
nn.Module
.. attribute:: multi_modal_projector
Projects vision features to language model space.
- Type:
nn.Module
.. attribute:: language_model
Megatron language model.
- Type:
nn.Module
.. attribute:: get_image_features
Method to extract image features (monkey-patched from HF).
- Type:
callable
Forward Inputs: input_ids (torch.LongTensor, optional): Tokenized input ids for the language model. attention_mask (torch.Tensor, optional): Attention mask for the language model. position_ids (torch.LongTensor, optional): Position ids for the language model. inputs_embeds (torch.FloatTensor, optional): Precomputed input embeddings. pixel_values (torch.Tensor, optional): Image tensor(s) for the vision tower. labels (torch.Tensor, optional): Target labels for supervised training. runtime_gather_output (bool, optional): If True, gather outputs across pipeline stages. loss_mask (Tensor, optional): Mask for loss computation.
- Returns:
Model output (e.g., logits or loss, depending on mode).
- Return type:
Tensor
.. note::
If
pre_processis False, only the language model is constructed.The vision tower and projector are only active if
pre_processis True.This class is intended for use within the Megatron-LM framework.
Requires transformers >= 5.0.0 for Mistral3 model support.
Initialization
- set_input_tensor(input_tensor) None#
Set model chunk input tensor.
- forward(
- input_ids: torch.LongTensor = None,
- attention_mask: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.LongTensor] = None,
- inputs_embeds: Optional[torch.FloatTensor] = None,
- pixel_values: Optional[torch.Tensor] = None,
- labels: Optional[torch.Tensor] = None,
- runtime_gather_output: Optional[bool] = None,
- image_sizes: Optional[torch.Tensor] = None,
- *,
- loss_mask: Optional[torch.Tensor] = None,
Forward pass combining HuggingFace vision encoder with Megatron language model.
- Parameters:
input_ids – Tokenized input ids for the language model.
attention_mask – Attention mask for the language model.
position_ids – Position ids for the language model.
inputs_embeds – Precomputed input embeddings.
pixel_values – Image tensor(s) for the vision tower.
labels – Target labels for supervised training.
runtime_gather_output – If True, gather outputs across pipeline stages.
loss_mask – Mask for loss computation.
- Returns:
Model output (logits or loss depending on mode).
- freeze(
- freeze_language_model: bool,
- freeze_vision_model: bool,
- freeze_vision_projection: bool,
Freeze model modules.
Make specific modules non-trainable by setting requires_grad to False.
- Parameters:
freeze_language_model (bool) – Freeze the language model module.
freeze_vision_model (bool) – Freeze the vision model module (vision_tower).
freeze_vision_projection (bool) – Freeze the vision projection module (multi_modal_projector).