bridge.recipes.gemma.gemma3#

Module Contents#

Classes#

Gemma3CommonKwargs

Typed options accepted by Gemma3 family recipe helpers.

Functions#

gemma3_1b_pretrain_config

Return a pre-training config for Gemma3 1B.

_gemma3_common

Create a pre-training configuration for Gemma3 family models.

Data#

API#

class bridge.recipes.gemma.gemma3.Gemma3CommonKwargs#

Bases: typing_extensions.TypedDict

Typed options accepted by Gemma3 family recipe helpers.

Initialization

Initialize self. See help(type(self)) for accurate signature.

provider_class: type#

None

hf_path: str | None#

None

dir: str | None#

None

name: str#

None

data_paths: list[str] | None#

None

data_args_path: str | None#

None

train_data_path: list[str] | None#

None

valid_data_path: list[str] | None#

None

test_data_path: list[str] | None#

None

per_split_data_args_path: str | None#

None

mock: bool#

None

tensor_parallelism: int#

None

pipeline_parallelism: int#

None

pipeline_parallelism_dtype: torch.dtype | None#

None

virtual_pipeline_parallelism: int | None#

None

context_parallelism: int#

None

sequence_parallelism: bool#

None

use_megatron_fsdp: bool#

None

account_for_embedding_in_pipeline_split: bool#

None

account_for_loss_in_pipeline_split: bool#

None

train_iters: int#

None

global_batch_size: int#

None

micro_batch_size: int#

None

seq_length: int#

None

lr: float#

None

min_lr: float#

None

lr_warmup_iters: int#

None

lr_decay_iters: int | None#

None

eval_interval: int#

None

save_interval: int#

None

use_null_tokenizer: bool#

None

precision_config: megatron.bridge.training.mixed_precision.MixedPrecisionConfig | str | None#

None

comm_overlap_config: megatron.bridge.training.comm_overlap.CommOverlapConfig | None#

None

bridge.recipes.gemma.gemma3.SEQUENCE_LENGTH_32K: int#

32768

bridge.recipes.gemma.gemma3.SEQUENCE_LENGTH_128K: int#

131072

bridge.recipes.gemma.gemma3.gemma3_1b_pretrain_config(
**user_kwargs: typing_extensions.Unpack[bridge.recipes.gemma.gemma3.Gemma3CommonKwargs],
) megatron.bridge.training.config.ConfigContainer#

Return a pre-training config for Gemma3 1B.

See _gemma3_common for the full list of parameters.

bridge.recipes.gemma.gemma3._gemma3_common(
provider_class: type,
hf_path: str | None = None,
dir: str | None = None,
name: str = 'default',
data_paths: list[str] | None = None,
data_args_path: str | None = None,
train_data_path: list[str] | None = None,
valid_data_path: list[str] | None = None,
test_data_path: list[str] | None = None,
per_split_data_args_path: str | None = None,
mock: bool = False,
tensor_parallelism: int = 1,
pipeline_parallelism: int = 1,
pipeline_parallelism_dtype: torch.dtype | None = None,
virtual_pipeline_parallelism: int | None = None,
context_parallelism: int = 1,
sequence_parallelism: bool = False,
use_megatron_fsdp: bool = False,
account_for_embedding_in_pipeline_split: bool = False,
account_for_loss_in_pipeline_split: bool = False,
train_iters: int = 1168251,
global_batch_size: int = 512,
micro_batch_size: int = 1,
seq_length: int = 131072,
lr: float = 0.0003,
min_lr: float = 3e-05,
lr_warmup_iters: int = 2000,
lr_decay_iters: int | None = None,
eval_interval: int = 2000,
save_interval: int = 500,
use_null_tokenizer: bool = True,
precision_config: megatron.bridge.training.mixed_precision.MixedPrecisionConfig | str | None = 'bf16_mixed',
comm_overlap_config: megatron.bridge.training.comm_overlap.CommOverlapConfig | None = None,
) megatron.bridge.training.config.ConfigContainer#

Create a pre-training configuration for Gemma3 family models.

Parameters:
  • provider_class (type) – Gemma3 model provider class (e.g., Gemma3ModelProvider1B).

  • hf_path (str | None) – HuggingFace model path (e.g., β€œgoogle/gemma-3-1b”).

  • dir (str | None) – Base directory for saving logs and checkpoints.

  • name (str) – Name of the pre-training run.

  • data_paths (list[str] | None) – List of paths to dataset files. If None, mock data will be used.

  • data_args_path (str | None) – Path to file containing data arguments.

  • train_data_path (list[str] | None) – List of training data paths.

  • valid_data_path (list[str] | None) – List of validation data paths.

  • test_data_path (list[str] | None) – List of test data paths.

  • per_split_data_args_path (str | None) – Path to JSON file with per-split data configuration.

  • mock (bool) – Whether to use mock data. If True, ignores data_paths.

  • tensor_parallelism (int) – Degree of tensor model parallelism.

  • pipeline_parallelism (int) – Degree of pipeline model parallelism.

  • pipeline_parallelism_dtype (torch.dtype | None) – Data type for pipeline parallelism.

  • virtual_pipeline_parallelism (int | None) – Size of virtual pipeline parallelism.

  • context_parallelism (int) – Degree of context parallelism.

  • sequence_parallelism (bool) – Whether to use sequence parallelism.

  • use_megatron_fsdp (bool) – Whether to use Megatron FSDP.

  • account_for_embedding_in_pipeline_split (bool) – Whether to account for embedding in pipeline split.

  • account_for_loss_in_pipeline_split (bool) – Whether to account for loss in pipeline split.

  • train_iters (int) – Total number of training iterations.

  • global_batch_size (int) – Global batch size for training.

  • micro_batch_size (int) – Micro batch size for training.

  • seq_length (int) – Sequence length for training data.

  • lr (float) – Learning rate.

  • min_lr (float) – Minimum learning rate for cosine decay.

  • lr_warmup_iters (int) – Number of warmup iterations for the learning rate.

  • lr_decay_iters (int | None) – Number of iterations over which to decay the LR.

  • eval_interval (int) – Evaluation interval.

  • save_interval (int) – Checkpoint save interval.

  • use_null_tokenizer (bool) – Whether to use null tokenizer for synthetic data.

  • precision_config (MixedPrecisionConfig | str | None) – Precision configuration for the model.

  • comm_overlap_config (CommOverlapConfig | None) – Communication overlap configuration.

Returns:

Configuration for pre-training.

Return type:

ConfigContainer